Fishnet graphs, their continuum limit and their deformations

Benjamin Basso LPENS

Multi-Loop 2019 Jussieu, 14-15 May

Based on work with De-liang Zhong

Plan

Conformal fishnet theory in d = 4

Continuum limit: fishnet graph and AdS non-linear sigma model

Deformations and conclusions

Fishnet CFT

A theory for matrix scalar fields with quartic coupling

[Gurdogan,Kazakov'15] [Caetano,Gurdogan,Kazakov'16]

[Leigh, Strassler'95]

[Lunin, Maldacena'05]

[Beisert,Roiban'05]

[Frolov'05]

$$\mathcal{L}_{\text{fishnet}} = N \text{tr} \left[\partial_{\mu} \phi_1 \partial_{\mu} \phi_1^* + \partial_{\mu} \phi_2 \partial_{\mu} \phi_2^* + (4\pi g)^2 \phi_1 \phi_2 \phi_1^* \phi_2^* \right]$$

Follows from N = 4 SYM

- a) Twist N=4 SYM theory ($\gamma\,$ deformation) b) Double scaling limit ($\gamma \to i\infty\,$ & $\lambda \to 0\,$)
 - 1. No SUSY: gluons & gauginos are gone
 - 2. Gauge group becomes a flavour group
 - 3. Conformal symmetry is preserved for any coupling in planar limit (caveat: double-trace couplings must be added and tuned)
 - 4. Integrability remains

[Grabner,Gromov,Kazakov,Korchemsky'17] [Sieg,Wilhelm'16]

Fishnet CFT

A theory for matrix scalar fields with quartic coupling

[Gurdogan,Kazakov'15] [Caetano,Gurdogan,Kazakov'16]

$$\mathcal{L}_{\text{fishnet}} = N \text{tr} \left[\partial_{\mu} \phi_1 \partial_{\mu} \phi_1^* + \partial_{\mu} \phi_2 \partial_{\mu} \phi_2^* + (4\pi g)^2 \phi_1 \phi_2 \phi_1^* \phi_2^* \right]$$

Planar graphs all look the same

Integrability less mysterious here (it follows from properties of quartic vertex) [Zamolodchikov'80] [Isaev'03] [Gromov,Kazakov,Korchemsky,Negro,Sizov'17] [Chicherin,Kazakov,Loebbert,Muller,Zhong'16]

Win simplicity (fewer graphs, fewer particles) Lose unitarity

Fishnet factory

Direct map between integrability picture and graphs

A few examples

Wheel graphs

Simplest local operator

$$\mathcal{O}_L = \operatorname{tr} \phi_1^L$$

Anomalous dimension

$$\Delta = \Delta_L(g) = L + \gamma$$

[Gurdogan,Kazakov'15] [Caetano,Gurdogan,Kazakov'16] [Gromov,Kazakov, Korchemsky,Negro,Sizov'17]

Loop diagrams: wheel graphs with L spokes

Z depends on UV cut off

 $R \sim \log \Lambda_{UV}$

Logarithmic dependence is controlled by the anomalous dimension

$$\log Z \sim -\gamma \times R$$

Magnon picture

Integrability: particular quantum mechanical way of looking at the graphs

Grand canonical partition function on $\mathbb{R} imes S_L$

- Each wheel maps to a magnon

- Each magnon carries a momentum **u**, along horizontal direction, and a spin **a**, for harmonics on 3-sphere

- Scaling dimension = free energy

$$\log \mathcal{Z}_{L,R} = -\Delta_L(g)R + O(R^0)$$

Thermodynamic Bethe Ansatz

Factorized scattering allows us to write TBA eqs (where integrability helps)

[Yang, Yang'60s] [Zamolodchikov'90s] [Klassen-Melzer'90s] [Ahn,Bajnok,Bombardelli,Nepomechie'11]

$$\log Y_a(u) = Lh - L\epsilon_a(u) + \sum_b \mathcal{K}_{ab} * \log (1 + Y_b(u)) + \dots$$

- length L of operator acts as inverse temperature
- coupling enters as chemical potential only

$$h = \log g^2$$

- dynamical input: energy of magnon & scattering kernel

$$\epsilon_a(u) = \log\left(u^2 + a^2/4\right)$$

Prediction: scaling dimension to all orders

$$\Delta = L - 2\sum_{a} \int \frac{du}{2\pi} \log\left(1 + Y_a(u)\right)$$

(should re-sum all the wheels)

Alternative to TBA : Baxter equations

[Gromov,Kazakov,Korchemsky,Negro,Sizov'17]

Recovering graphs

Wheel expansion (large L / weak coupling) corresponds to low-T expansion of TBA (iterative solution)

LO
$$Y_a(u) \simeq a^2 e^{L(h-\epsilon_a)} \ll 1$$

(Boltzmann weight free magnon)

LO
$$\Delta = L - 2\sum_{a}\int \frac{du}{2\pi}Y_{a}(u) + \dots$$

Match divergent part of 1-wheel graph

div
$$\left[\underbrace{-}_{a \ge 1} du \right] = -\sum_{a \ge 1} a^2 \int \frac{du}{\pi} \frac{g^{2L}}{(u^2 + a^2/4)^L} \propto g^{2L} \zeta(2L - 3)$$
[Broadhurst'85]
[Gurdogan,Kazakov'15]
[Ahn,Bajnok,Bombardelli,Nepomechie'1]

Higher wheels

Higher loops at given length can be generated more easily using the Baxter equations

E.g. scaling dimension for L=3 up to 4 wheels (12 loops)

$$\begin{split} &\Delta_{3}-3=-12\zeta_{3}\xi^{6}+\xi^{12}\left(189\zeta_{7}-144\zeta_{3}^{2}\right)\\ &+\xi^{18}\left(-1944\zeta_{8,2,1}-3024\zeta_{3}^{3}-3024\zeta_{5}\zeta_{3}^{2}+6804\zeta_{7}\zeta_{3}+\frac{198\pi^{8}\zeta_{3}}{175}+\frac{612\pi^{6}\zeta_{5}}{35}+270\pi^{4}\zeta_{7}+5994\pi^{2}\zeta_{9}-\frac{925911\zeta_{11}}{8}\right)\\ &+\xi^{24}\left(-93312\zeta_{3}\zeta_{8,2,1}+\frac{10368}{5}\pi^{4}\zeta_{8,2,1}+5184\pi^{2}\zeta_{9,3,1}+51840\pi^{2}\zeta_{10,2,1}-148716\zeta_{11,3,1}-1061910\zeta_{12,2,1}\right)\\ &+62208\zeta_{10,2,1,1,1}-77760\zeta_{3}^{4}-145152\zeta_{5}\zeta_{3}^{3}-\frac{576}{7}\pi^{6}\zeta_{3}^{3}-864\pi^{4}\zeta_{5}\zeta_{3}^{2}-2592\pi^{2}\zeta_{7}\zeta_{3}^{2}+244944\zeta_{7}\zeta_{3}^{2}\\ &+186588\zeta_{9}\zeta_{3}^{2}+\frac{9504}{175}\pi^{8}\zeta_{3}^{2}-2592\pi^{2}\zeta_{5}^{2}\zeta_{3}+\frac{29376}{35}\pi^{6}\zeta_{5}\zeta_{3}+298404\zeta_{5}\zeta_{7}\zeta_{3}+12960\pi^{4}\zeta_{7}\zeta_{3}+287712\pi^{2}\zeta_{9}\zeta_{3}\\ &-5555466\zeta_{11}\zeta_{3}+\frac{2910394\pi^{12}\zeta_{3}}{2627625}+57672\zeta_{5}^{3}-71442\zeta_{7}^{2}+\frac{13953\pi^{10}\zeta_{5}}{1925}+\frac{7293\pi^{8}\zeta_{7}}{175}-\frac{19959\pi^{6}\zeta_{9}}{5}\\ &+\frac{119979\pi^{4}\zeta_{11}}{2}+\frac{10738413\pi^{2}\zeta_{13}}{2}-\frac{4607294013\zeta_{15}}{80}\right)+O\left(\xi^{30}\right)\,, \end{split}$$

where $\zeta_{i_1,\ldots,i_k} = \sum_{n_1 > \cdots > n_k > 0} 1/(n_1^{i_1} \ldots n_k^{i_k})$ are multiple zeta functions

[Gromov,Kazakov,Korchemsky,Negro,Sizov'17]

coupling
$$\xi^2 = g^2$$

Fishnet 4pt function

$$G_{n,m} = \langle \phi_2^n(x_1)\phi_1^m(x_3)\phi_2^{\dagger n}(x_2)\phi_1^{\dagger m}(x_4) \rangle$$

$$=\frac{g^{2mn}}{(x_{12}^2)^n(x_{34}^2)^m} \times \Phi_{m,n}(u,v)$$

UV-IR finite, depends on 2 cross ratios \boldsymbol{u} and \boldsymbol{v}

$$u = \frac{x_{14}^2 x_{23}^2}{x_{12}^2 x_{34}^2} = \frac{z\bar{z}}{(1-z)(1-\bar{z})}$$
$$v = \frac{x_{13}^2 x_{24}^2}{x_{12}^2 x_{34}^2} = \frac{1}{(1-z)(1-\bar{z})}$$

Parameterization
(for
$$n \ge m$$
) $\Phi_{m,n}(u,v) = \left[\frac{(1-z)(1-\bar{z})}{z-\bar{z}}\right]^m \times I_{m,n}(z,\bar{z})$

with $I_{m,n}$ a pure function (i.e. iterated integral) of weight 2mn

Fishnet 4pt function

$$G_{n,m} = \langle \phi_2^n(x_1)\phi_1^m(x_3)\phi_2^{\dagger n}(x_2)\phi_1^{\dagger m}(x_4) \rangle$$

$$=\frac{g^{2mn}}{(x_{12}^2)^n(x_{34}^2)^m}\times\Phi_{m,n}(u,v)$$

UV-IR finite, depends on 2 cross ratios \boldsymbol{u} and \boldsymbol{v}

Ladders when m = 1

[Usyukina, Davydychev'93]

$$I_{1,n}(z,\bar{z}) = L_n(z,\bar{z})$$

Weight 2n generalization of **Bloch-Wigner** dilogarithm

$$L_n(z,\bar{z}) = \sum_{j=n}^{2n} \frac{j! [-\log(z\bar{z})]^{2n-j}}{n! (j-n)! (2n-j)!} [\mathrm{Li}_j(z) - \mathrm{Li}_j(\bar{z})]$$

Fishnet 4pt function

$$G_{n,m} = \langle \phi_2^n(x_1)\phi_1^m(x_3)\phi_2^{\dagger n}(x_2)\phi_1^{\dagger m}(x_4) \rangle$$

$$=\frac{g^{2mn}}{(x_{12}^2)^n(x_{34}^2)^m}\times\Phi_{m,n}(u,v)$$

UV-IR finite, depends on 2 cross ratios \boldsymbol{u} and \boldsymbol{v}

What are these Feynman integrals equal to for higher m?

Integrability

Cut 4pt function into two hexagons ~ triangles

Magnon picture

Vertical lines map to reference state of length n Horizontal lines map to m magnons propagating through it

Hexagon factorization

annihilation of m magnon state on top triangle

propagation of state from one triangle to another

creation of m magnon state on bottom triangle

[BB,Komatsu,Vieira' I 5] [Fleury,Komatsu' I 6] [Eden,Sfondrini' I 6]

Fishnet integral as a determinant

$$G_{n,m} = \langle \phi_2^n(x_1)\phi_1^m(x_3)\phi_2^{\dagger n}(x_2)\phi_1^{\dagger m}(x_4) \rangle$$

$$=\frac{g^{2mn}}{(x_{12}^2)^n(x_{34}^2)^m}\times\Phi_{m,n}(u,v)$$

UV-IR finite, depends on 2 cross ratios \boldsymbol{u} and \boldsymbol{v}

Integrability provides matrix-model-like integral representations **Analyticity** requirements (Steinmann's relations)

 \longrightarrow weight 2mn pure function $I_{m,n}\propto 0$

Determinant of a m-by-m Hankel matrix M of ladders

$$M_{ij} = (n - m + i + j - 2)!(n - m + i + j - 1)! \times L_{n - m + i + j - 1}(z, \bar{z})$$

 p_2

 p_1

[BB,Dixon'17]

More integrability

Hexagons can also be used to compute 3pt functions

[BB,Caetano,Fleury'18]

Limitation on number of magnons (red lines) due to divergences Divergences can be consistently removed for 1 magnon = 1 wheel graph

n_1	n_2	$C_{1-\text{wheel}}$	
1	2	$6\zeta_3$	
1	3	$20\zeta_5$	
1	4	$70\zeta_7$	
1	5	$252\zeta_9$	
2	2	$-6\zeta_3^2 + 20\zeta_5$	
2	3	$-30\zeta_3\zeta_5+70\zeta_7$	
2	4	$-10\zeta_5^2 - 112\zeta_3\zeta_7 + 252\zeta_9$	
3	3	$-290\zeta_5^2 + 112\zeta_3\zeta_7 + 252\zeta_9$	
3	4	$-1176\zeta_5\zeta_7 + 420\zeta_3\zeta_9 + 924\zeta_{11}$	
4	4	$-3178\zeta_7^2 - 1680\zeta_5\zeta_9 + 1584\zeta_3\zeta_{11} + 3432\zeta_{13}$	

Large fishnet graphs

Continuum limit

Duality with string in AdS?

Fishnet limit forces 't Hooft coupling of N=4 to be small

Tensionless string in AdS?

Insight from 70's: connection between fishnets and string WS

[Nielsen,Olesen'70] [Fairlie,Nielsen'70] [Sakita,Virasoro'70]

[Zamolodchikov'80]

Volume 97B, number 1	PHYSICS LETTERS	17 November 1980		
"FISHING-NET" DIAGRAMS AS A COMPLETELY INTEGRABLE SYSTEM				
A.B. ZAMOLODCHIKOV	A.B. ZAMOLODCHIKOV The Academy of Sciences of the USSR, L.D. Landau Institute for Theoretical Physics, Chernogolovka, USSR Received 29 July 1980			
The Academy of Sciences of the US				
Received 29 July 1980				
The "fishing-net" planar Feynma pletely integrable lattice statistical sy	an diagrams with massless scalar propagators are shystem. The infinite-volume partition function for	hown to be equivalent to some com- this system is computed exactly.		

Continuum limit

Duality with string in AdS?

Fishnet limit forces 't Hooft coupling of N=4 to be small Tensionless string in AdS?

Insight from 70's: connection between fishnets and string WS

Zamolodchikov's thermodynamic scaling

 $L, T \to \infty$

[Zamolodchikov'80]

 $\log Z_{L,T} = -L \times T \log g_{cr}^2$

$$g_{cr} = \frac{\Gamma(3/4)}{\sqrt{\pi}\Gamma(5/4)} = 0.7...$$

Continuum limit

Duality with string in AdS?

Fishnet limit forces 't Hooft coupling of N=4 to be small Tensionless string in AdS?

Insight from 70's: connection between fishnets and string WS

Meaning of g_{cr} coupling in fishnet CFT?

critical value of coupling constant for which fishnet observables dominated by "dense graphs"

World-sheet theory of fishnets?

Claim: 2d non-linear AdS5 sigma model

(Graphs live in 4d but target space is 5d; as in conventional AdS/CFT)

 $L, T \to \infty$

L

[Zamolodchikov'80]

Illustration

Look at scaling dimension Δ of BMN vacuum operator $\mathcal{O}_L = \operatorname{tr} \phi_1^L$

Thermodynamic limit

Dual (rotated) view

Look at scaling dimension Δ of BMN vacuum operator $\mathcal{O}_L = \operatorname{tr} \phi_1^L$

Thermodynamic limit $g^2(\Delta)$ g_{cr}^2 $L \to \infty$ $\Delta \sim Lf(q)$ 1/4Fishnet graph = AdS5 sigma model with the dictionary 2 Ľ

BMN operator = tachyon $\operatorname{tr} \phi_1^L \leftrightarrow V_\Delta \sim e^{-i\Delta t}$ coupling = worldsheet energy $\log g^{2L} = \log g_{cr}^{2L} + E_{2d}(\Delta, L)$

Thermodynamic limit

Interesting when chemical potential is bigger than mass of lightest magnon

$$h = \epsilon(u = 0) = \log 1/4$$

i.e. g > 1/2

A Fermi sea forms

All states below the Fermi rapidity are filled

Increasing coupling amounts to increasing B

Comment: truncate to s-wave (lightest) magnons (higher harmonics decouple)

Fredholm equation

TBA reduce to a single linear integral equation for the energy distribution

$$\chi(u) = C - \epsilon(u) + \int_{-B}^{B} \frac{du}{2\pi} \mathcal{K}(u-v)\chi(v)$$

-BC
$$\chi(u=\pm B)=0$$

- Chemical potential
$$C = \log g^2 - \int_{-B}^{B} \frac{du}{2\pi} k(u) \chi(u)$$

- Kernel
$$\mathcal{K}(u) = 2\psi(1+iu) + 2\psi(1-iu) + \frac{2}{1+u^2}$$

- Scaling dimension Δ/L

$$L = 1 - \int_{-B}^{B} \frac{du}{\pi} \chi(u)$$

Critical point and dualization

Critical coupling: large magnon density $B \to \infty$

All energy levels are filled, equation solved by Fourier transform Zamolodchikov prediction is reproduced

$$g_{cr} = \Gamma(3/4) / \sqrt{\pi} \Gamma(5/4)$$

Particle-hole transformation

Fermi sea of magnons

 \mathcal{K}

 $-\mathcal{K}_{*}$

dual Fermi sea

Mathematically:

1) inverting kernel
$$K = -\frac{1}{1}$$

2) acting on both sides of the equation with

1 - K *

Dual system

Equation

$$\chi(\theta) = E(\theta) + \int_{\theta^2 > B^2} \frac{d\theta'}{2\pi} K(\theta - \theta') \chi(\theta')$$

Energy formula

$$\log g^2 = \log g_{cr}^2 + \int_{\theta^2 > B^2} \frac{d\theta}{2\pi} P'(\theta) \chi(\theta)$$

No chemical potential but extra BC (at ∞)

$$\chi(\theta) \sim -2\rho\log \theta \qquad
ho = \Delta/L =
m \ charge \ density$$

1) Kernel $K(\theta) = \frac{\partial}{i\partial\theta} \log \frac{\Gamma(1 + \frac{i\theta}{2\pi})\Gamma(\frac{1}{2} - \frac{i\theta}{2\pi})\Gamma(\frac{3}{4} + \frac{i\theta}{2\pi})\Gamma(\frac{1}{4} - \frac{i\theta}{2\pi})}{\Gamma(1 - \frac{i\theta}{2\pi})\Gamma(\frac{1}{2} + \frac{i\theta}{2\pi})\Gamma(\frac{3}{4} - \frac{i\theta}{2\pi})\Gamma(\frac{1}{4} + \frac{i\theta}{2\pi})}$

2) Dispersion relation

$$E(\theta) = \chi_{cr} \sim \frac{m}{2} e^{-|\theta|} \qquad P(\theta) = -iE(\theta + i\pi/2)$$

with $m = 4\sqrt{2}$ a mass scale

Interpretation

What is the dual system describing?

1) Kernel:
$$K = -i\partial_{\theta} \log S_{O(6)}$$

Particles scatter as in 2d O(6) non-linear sigma model!

[Zamolodchikov&Zamolodchikov'78]

2) Dispersion relation:

$$\sinh^2\left(\frac{1}{2}E\right) = \sin^2\left(\frac{1}{2}P\right)$$

Gapless excitations (unlike O(6) model)

E decreases when θ increases Support is non-compact & density is not normalizable (cannot count excitations)

No mass gap + continuous spectrum Suggest sigma model with **non-compact** target space Proposal: integrable lattice completion of AdS_5 sigma model

Dual theory

2d sigma model on hyperbolic target space $-Y_0^2 + Y_\perp^2 - Y_{d+1}^2 = -1$

$$\mathcal{L} = -\frac{1}{2e^2} G^{AB} \partial_a Y_A \partial^a Y_B$$

Weakly coupled for large radius $R^2_{AdS} \sim 1/e^2 \gg 1$

Negative curvature ←→ Positive beta function

coupling grows with the energy scale

$$\frac{1}{e^2(\mu)} = \frac{d}{2\pi} \log\left(\Lambda/\mu\right)$$

- 1. Theory is weakly coupled in IR
- 2. There is no mass gap
- 3. Integrable but gapless and no good particle picture

Similarities with massless factorized scattering theories (although not clear what particles to scatter)

[Zamolodchikov&Zamoldchikov'92] [Fendley,Saleur,Zamolodchikov'93] [Fateev,Onofri,Zamolodchikov'93]

Dual state

Take sigma model on circle of radius L

Interested in "ground state": tachyon

$$V_{\Delta} \sim e^{-i\Delta t}$$

(extremum of energy E for given charge Δ)

Classical energy

$$E = -\frac{e^2 \Delta^2}{2L}$$

Same as in O(d+2) model if not for the sign of the coupling $e^2 \leftrightarrow -e^2$

Quadratic scaling near critical point ($\Delta \rightarrow 0$) (robust perturbatively; loops translate into logarithmic corrections)

Numerics

SM prediction fits numerical sol. of linear eq. near critical point

All order argument

Dual equation describes tachyon energy of the AdS sigma model to **all orders** in perturbation theory

Solutions for sphere and hyperboloid can be constructed to any [Volin'09] order in 1/B expansion They become identical if one flips the sign of the Fermi rapidity

$$B \to -B$$

Fermi rapidity acts as inverse running coupling

$$B \sim 1/e^2 \sim \log\left(L/\Delta\right) \gg 1$$

at energy scale $\ \sim
ho = \Delta/L$

Changing sign of B has the same effect as changing the sign of radius of curvature of the space, mapping sphere to hyperboloid

Dual descriptions

Original magnon TBA (massive)

$$\log Y_1 = L \log g^2 - L\epsilon + \mathcal{K} * \log (1 + Y_1) + \dots$$
$$\Delta = L - \sum_{a=1}^{\infty} \int \frac{du}{\pi} \log (1 + Y_a)$$

input: coupling $\log g^2$ output: scaling dimension Δ

massive TBA (black nodes = energy carriers)

Dual TBA (massless)

$$\log Y_1 = LE - K_{O(6)} * \log (1 + 1/Y_1) + \dots$$
$$\log g^{2L} / g_{cr}^{2L} = -\int \frac{d\theta}{2\pi} P'(\theta) \log (1 + 1/Y_1)$$

massless TBA (only 1 momentum carrier)

 $\Delta = \text{input}$ (label tachyon rep) $\log g^2 = \text{output}$ (sigma model energy)

Y system

Y system equations are the same as for compact sigma model

[Balog,Hegedus'04] [Fendley'99]

$$\frac{Y_{a,s}^+ Y_{a,s}^-}{Y_{a+1,s}^- Y_{a-1,s}^-} = \frac{(1+Y_{a,s+1})(1+Y_{a,s-1})}{(1+Y_{a+1,s})(1+Y_{a-1,s})}$$

$$\frac{1}{Y_1^{++}Y_1^{--}} = (1 + \frac{1}{Y_{2,1}})(1 + \frac{1}{Y_{2,0}^+})(1 + \frac{1}{Y_{2,0}^-})(1 + \frac{1}{Y_{2,0}^-})$$

regardless of the phase we use

Tachyon energy from TBA

TBA analysis in CFT limit (1 / L energy or Casimir energy)

 $L \gg 1$ $\Delta = O(1)$

Get scale-invariant "kink" solution
 Run dilog routine for central charge

$$c_{\star} = \sum_{i} \mathcal{L}(\frac{Y_{i}^{\star}}{1 + Y_{i}^{\star}})$$

with Rogers dilogarithm
$$\mathcal{L}(x) = \frac{6}{\pi^2} (\text{Li}_2(x) + \frac{1}{2} \log x \log (1-x))$$

Here, kink interpolates between:
symmetric phase

$$O(6)$$

 $c_0 = 7$
Yield TBA central charge
 $C = c_0 - c_\infty = 5$
 $C = c_0 - c_\infty = 5$

see also alog,Hegedus'04]

[Zamolodchikov'90s] [Klassen-Melzer'90s]

Tachyon energy from CFT

CFT analysis: close to IR fixed point (large length) for AdS_{d+1}

Energy level maps to anomalous dimension of vertex operator (operator-state correspondence)

$$V_{\Delta} \sim e^{-i\Delta t} \quad \Longrightarrow \quad E_{2d} = -\frac{\pi c_{eff}(L)}{6L} - \frac{e^2 \Delta(\Delta - d)}{2L} + O(e^4)$$

running coupling (distance L) $e^2 \sim \frac{2\pi}{d\log L} \ll 1$

effective central charge (distance L): $c_{eff}(L) = d + 1 + O(e^2)$

Agreement with **TBA analysis** (for d=4)

Spinning the wheels

Operators with spin $\operatorname{tr} \partial^M \phi_1^L$

Scaling dimension at weak coupling $\Delta = L + M + O(g^{2L})$

Primaries map to solutions of Bethe equations for non-compact spin chain

$$1 = \left(\frac{v_k - i/2}{v_k + i/2}\right)^L \prod_{\substack{j \neq k}}^M \frac{v_k - v_j - i}{v_k - v_j + i} \times e^{i\Phi_k}$$
dressing factor

dressing factor = long-range corrections from wheels

Anomalous dimension obtained as before

(Y's solving TBA eqs with extra source terms from the v's)

$$\gamma = -\sum_{a \ge 1} \int \frac{du}{\pi} \log \left(1 + Y_a(u) \right)$$

Dualize...

Spinning the wheels

Dual energy $L \log g^2 / g_{cr}^2 = \sum_{i=1}^M E(\theta_i) - \int \frac{d\theta}{2\pi} P'(\theta) \log (1 + 1/Y_1(\theta))$ transverse excitations + "vacuum" energy (negative)

in agreement with expectation for states dual to

$$V_{\Delta,M,N} \sim \partial^N (Y_1 + iY_2)^M \times e^{-i\Delta t}$$

and signature of AdS

Dual Bethe equations

 $e^{iP(\theta_k)L} \prod_{\substack{j \neq k}}^M S_{O(6)}(\theta_k - \theta_j) = 1$

as for O(6) model if not for the momentum

$$P(\theta) = \mp \frac{m}{2} e^{-|\theta|}$$

if not for the momentum that decays at large rapidity \longrightarrow flip the sign of the coupling

Deformations

Deformations

 $1-2\epsilon$

[Zamolodchikov'80]

[Kazakov,Olivucci'18]

Anisotropic 4d fishnets (nonlocal field theory)

Generalized free fields $1+2\epsilon$ $\frac{1}{x^{2(1\pm 2\epsilon)}}$ with quartic coupling

Still conformal and integrable

Does it descend from a (non-local) deformation of N=4 SYM?

Zamolodchikov's coupling

Critical coupling follows from functional equations (d=4)

$$\star g_{cr}^2(\epsilon) = g_{cr}^2(-\epsilon)$$

$$\star g_{cr}^2(\epsilon) g_{cr}^2(1+\epsilon) = 16 \epsilon (\epsilon + \frac{1}{2})^2 (\epsilon + 1)$$

(akin to unitarity and crossing relations for S-matrix)

Minimal solution reads

$$g_{cr}^2(\epsilon) = \frac{8\epsilon \cot(\frac{\pi\epsilon}{2})\Gamma(\frac{3}{4} + \frac{\epsilon}{2})\Gamma(\frac{3}{4} - \frac{\epsilon}{2})}{\Gamma(\frac{1}{4} + \frac{\epsilon}{2})\Gamma(\frac{1}{4} - \frac{\epsilon}{2})}$$

TBA scattering data

Where to get TBA scattering data?

Separation of variables (not easy for higher d)

[Derkachov,Kazakov,Olivucci'18]

Bottom-up approach: Guess/extract building blocks and check against field theory

E.g., 1-wheel graph

TBA scattering data

Where to get TBA scattering data?

Separation of variables (not easy for higher d)

[Derkachov,Kazakov,Olivucci'18]

Bottom-up approach: Guess/extract building blocks and check against field theory

E.g., 1-wheel graph

Div of
$$1+2\epsilon - 1-2\epsilon = 6\zeta(3) + 180\zeta(5)\epsilon^2 + \dots$$

Agreement with known results see e.g. [Grozin'12]

Dual model

Reproduce Z critical coupling

$$\log g_{cr}^2 = \int \frac{du}{2\pi} k(u) \chi_{cr}(u) = \log g_Z^2$$

The rest stays the same, if not for dispersion relation

$$\sinh^2(\frac{E}{2}) = c(\epsilon)^2 \sin^2(\frac{P}{2})$$

with deformation in the speed of light $c = tan \frac{\pi}{4}(1 - 2\epsilon)$

Innocuous at low energy/momentum: AdS5 sigma model, again

Fishnet zoo

Integrable fishnets exist in any d

[Zamolodchikov'80] [Kazakov,Olivucci'18]

Enlarged family of fishnets with Yukawa interactions, etc.

[Chicherin,Kazakov,Loebbert,Muller,Zhong'17]

General dictionary between fishnets and non-compact sigma models?

Summary

Fishnet graphs = quantum integrable system

```
Fishnet graphs = 2d AdS5 sigma model
```

Dual model is weakly coupled when fishnet lengths are large

Large L and "small" quantum numbers = low worldsheet energy

Well tested for simplest state, but how general is the dictionary?

String or not?

Marginality condition of sort
$$0 = L\mu + E_{2d}(L)$$
 with cosmological constant $\mu = \log g_{cr}^2/g^2$

On-shell condition comes from the geometric sum over the wheels

$$\sum_{T \ge 0} (g/g_{cr})^{2LT} e^{-TE_{2d}(L,\Delta)} = \frac{1}{1 - (g/g_{cr})^{2L} e^{-E_{2d}(L,\Delta)}}$$

with T acting as a discrete time

Is the conformal fishnet a non-critical AdS string model?

SM in UV? Follow the RG flow: small AdS in UV?

Lagrangian at lattice scale? [Gromov, Sever' 19]

THANK YOU!