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The GW templates of compact binaries

1 In principle, the templates are obtained by matching together:

A high-order 3.5PN waveform for the inspiral [Blanchet et al. 1998, 2002, 2004]

A highly accurate numerical waveform for the merger and ringdown
[Pretorius 2005; Baker et al. 2006; Campanelli et al. 2006]

2 In the practical data analysis, for black hole binaries (such as GW150914),
effective methods that interpolate between the PN and NR play a key role:

Hybrid inspiral-merger-ringdown (IMR) waveforms [Ajith et al. 2011] are
constructed by matching the PN and NR waveforms in a time interval
through an intermediate phenomenological phase
Effective-one-body (EOB) waveforms [Buonanno & Damour 1998] are based on
resummation techniques extending the domain of validity of the PN
approximation beyond the inspiral phase

3 In the case of neutron star binaries (such as GW170817), the masses are
smaller and the templates are entirely based on the 3.5PN waveform
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Quadrupole moment formalism [Einstein 1918; Landau & Lifchitz 1947]

1 Einstein quadrupole formula(
dE

dt

)GW

=
G

5c5

{
d3Qij

dt3
d3Qij

dt3
+O

(v
c

)2}
2 Amplitude quadrupole formula

hTT
ij =

2G

c4D

{
d2Qij

dt2

(
t− D

c

)
+O

(v
c

)}TT

+O
(

1

D2

)
3 Radiation reaction formula [Chandrasekhar & Esposito 1970; Burke & Thorne 1970]

F reac
i = − 2G

5c5
ρ xj

d5Qij
dt5

+O
(v
c

)7
which is a 2.5PN ∼ (v/c)5 effect in the source’s equations of motion
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Measurement of PN parameters from BH events
[LIGO/Virgo collaboration 2016]
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Measurement of PN parameters from the NS event
[LIGO/Virgo collaboration 2017]
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Summary of known PN orders

Method Equations of motion Energy flux Waveform

Multipolar-post-Minkowskian & post-Newtonian 4PN 3.5PN1 3.5PN
(MPM-PN) 3.5PN (NNL) SO 4PN (NNL) SO 1.5PN (L) SO

3PN (NL) SS 3PN (NL) SS 2PN (L) SS
3.5PN (NL) SSS 3.5PN (NL) SSS

Canonical ADM Hamiltonian 4PN
3.5PN (NNL) SO

4PN (NNL) SS
3.5PN (NL) SSS

Effective Field Theory (EFT) 4PN 2PN
2.5PN (NL) SO
4PN (NNL) SS 3PN (NL) SS

Direct Integration of Relaxed Equations (DIRE) 2.5PN 2PN 2PN
1.5PN (L) SO 1.5PN (L) SO 1.5PN (L) SO

2PN (L) SS 2PN (L) SS 2PN (L) SS
Surface Integral 3PN non-spin

Spin effects (SO, SS, SSS) are known in EOM up to 4PN order

SO effects are known in radiation field up to 4PN

SS in radiation field known to 3PN

1The 4.5PN coefficient is also known [Marchand, Blanchet & Faye 2016]
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Wave-generation and radiation-reaction problems

Gauge-fixed Einstein field equations

∂νh
µν = 0 (harmonic gauge condition)

�hµν =
16πG

c4
τµν (flat space-time wave equation)

Pseudo-tensor of matter and gravitational fields

τµν = |g|Tµν︸ ︷︷ ︸
matter part

+
c4

16πG
Λµν(h, ∂h, ∂2h)︸ ︷︷ ︸

gravitational part

1 Radiation-reaction problem: solve the EFE inside the compact-support source
to get the reaction forces acting the an isolated source

2 Wave generation problem: solve the EFE in vacuum outside the source
(including the regions at infinity) to get the waveform as a functional of the
source parameters
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Regions of space around the GW source

Matching zone   

a <r << λ

Near zone    

r << λ

r > a

Exterior zone

Wave zone    

r > λ      

Source

v << c

GW wavelength

λ      
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Multipolar-post-Minkowskian expansion
[Blanchet & Damour 1986, 1988, 1992; Blanchet 1987, 1993, 1998]

1 Look for the general multipolar expansion M(h) generated outside the source
in the form [Bonnor 1959, Bonnor & Rotenberg 1961]

M(h) = Gh(1) +G2 h(1) + · · ·+Gn h(n) + · · ·︸ ︷︷ ︸
formal post-Minkowskian expansion

2 Start from the general multipolar solution of the vacuum field equation at
linear order [Thorne 1980]

h(1)[ML, SL] =

+∞∑
`=0

[
∂L

(
1

r
ML(t− r/c)︸ ︷︷ ︸

mass-type moment

)
+ εabc ∂L

(
1

r
SL(t− r/c)︸ ︷︷ ︸

current-type moment

)]

3 Iterate that solution using a specific regularization scheme based on A.C. in
B ∈ C to cope with the singularity of the multipole expansion when r → 0

Finite Part
B=0

�−1ret

[
(r/r0)Bf

]
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Multipolar-post-Minkowskian expansion
[Blanchet & Damour 1986, 1988, 1992; Blanchet 1987, 1993, 1998]

1 At n-th post-Minkowskian order we need to solve

∂νh
µν
(n) = 0

�hµν(n) = Λµν
(
h(1), · · ·h(n−1)︸ ︷︷ ︸

known from previous iterations

)
2 A particular solution with the required multipole structure reads

uµν(n) = FP
B=0

�−1Ret

[
( rr0 )BΛµν(n)

]
3 In order to guarantee that the harmonic gauge condition ∂νh

µν
(n) = 0 is

satisfied we add an homogeneous solution vµν(n) hence

hµν(n) = uµν(n) + vµν(n)

4 The MPM solution is generated by a plug-and-grind algorithm up to any PM
order as a functional of the multipole moments ML(t) and SL(t)
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Multipolar-post-Minkowskian expansion
[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

Theorem 1:
The MPM solution is the most general solution of Einstein’s vacuum equations
outside an isolated matter system

Theorem 2:
The general structure of the PN expansion is

hαβPN(x, t, c) =
∑
p>2
q>0

(ln c)q

cp
hαβp,q(x, t)

Theorem 3:
The MPM solution is asymptotically flat at future null infinity in the sense of
Penrose and recovers the Bondi-Sachs formalism [1960s]
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Multipolar-post-Minkowskian expansion
[Blanchet & Damour 1986, 1988, 1992; Blanchet 1987, 1993, 1998]

I 0
matter
source

J+

J -

B

ADM

(u)M

M

radiation
    loss

MB(u) = MADM −

mass-energy emitted in GW︷ ︸︸ ︷
G

5c7

∫ u

−∞
dtM

(3)
ij (t)M

(3)
ij (t)

+

{
higher-order multipole moments and
higher-order PM approximations
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Problem of the matching
[Lagerström et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

1 Most general multipolar(-post-Minkowskian) solution in the source’s exterior

M(h) = FP
B=0

�−1ret

[
( rr0 )BM(Λ)

]
+

+∞∑
`=0

∂L

{
ML(t− r/c)

r

}
where the homogeneous solution is parametrized by multipole moments

2 Most general PN solution in the source’s near zone

h̄ = FP
B=0

�−1sym

[
( rr0 )B τ̄

]
+

+∞∑
`=0

∂L

{
AL(t− r/c)−AL(t+ r/c)

r

}
where the homogeneous solution (regular when r → 0) is parametrized by
“radiation reaction” multipole moments

3 We impose the matching equation

M(h) =M(h̄)
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Problem of the matching
[Lagerström et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]
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Near zone expansion of the multipole expansion

Lemma 1: [Blanchet 1993, 1998]

FP
B=0

�−1ret

[
( rr0 )BM(Λ)

]
= FP
B=0

�−1sym

[
( rr0 )BM(Λ)

]
− 4G

c4

+∞∑
`=0

∂L

{RL(t− r/c)−RL(t+ r/c)

2r

}
︸ ︷︷ ︸

antisymmetric type homogeneous solution

where the radiation reaction multipole moments are

RL(u) = FP
B=0

∫
d3x ( rr0 )B x̂L

∫ +∞

1

dz γ`(z) M(τ)(x, t− zr/c)︸ ︷︷ ︸
multipole expansion of the pseudo-tensor

The finite part at B = 0 plays the role of an UV regularization (r → 0)
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Far zone expansion of the PN expansion

Lemma 2: [Poujade & Blanchet 2001]

M
(

FP
B=0

�−1sym

[
( rr0 )B τ̄

])
= FP
B=0

�−1sym

[
( rr0 )BM(τ̄)

]
− 1

4π

+∞∑
`=0

∂L

{FL(t− r/c) + FL(t+ r/c)

2r

}
︸ ︷︷ ︸

symmetric type homogeneous solution

FL(u) = FP
B=0

∫
d3x ( rr0 )B x̂L

∫ 1

−1
dz δ`(z) τ̄(x, t− zr/c)︸ ︷︷ ︸

PN expansion of the pseudo-tensor

The finite part at B = 0 plays the role of an IR regularization (r → +∞)
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General solution of the matching equation

1 In the far zone

M(h) = FP
B=0

�−1ret

[
( rr0 )BM(Λ)

]
− 4G

c4

+∞∑
`=0

∂L

{FL(t− r/c)
r

}
︸ ︷︷ ︸

source’s multipole moments

2 In the near zone [Poujade & Blanchet 2002; Blanchet, Faye & Nissanke 2005]

h̄ = FP
B=0

�−1ret

[
( rr0 )B τ̄

]
− 4G

c4

+∞∑
`=0

∂L

{RL(t− r/c)−RL(t+ r/c)

r

}
︸ ︷︷ ︸

non-local tail term (4PN order)
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PROBLEM OF THE MOTION
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4PN equations of motion of compact binary systems

dv1

dt
=− Gm2

r212
n12

+

1PN Lorentz-Droste-Einstein-Infeld-Hoffmann term︷ ︸︸ ︷
1

c2

{[
5G2m1m2

r312
+

4G2m2
2

r312
+ · · ·

]
n12 + · · ·

}
+

1

c4
[· · · ]︸ ︷︷ ︸

2PN

+
1

c5
[· · · ]︸ ︷︷ ︸

2.5PN
radiation reaction

+
1

c6
[· · · ]︸ ︷︷ ︸

3PN

+
1

c7
[· · · ]︸ ︷︷ ︸

3.5PN
radiation reaction

+
1

c8
[· · · ]︸ ︷︷ ︸

4PN
conservative & radiation tail

+O
(

1

c9

)

3PN


[Jaranowski & Schäfer 1999; Damour, Jaranowski & Schäfer 2001ab]

[Blanchet-Faye-de Andrade 2000, 2001; Blanchet & Iyer 2002]

[Itoh & Futamase 2003; Itoh 2004]

[Foffa & Sturani 2011]

ADM Hamiltonian

Harmonic EOM

Surface integral method

Effective field theory

4PN

 [Jaranowski & Schäfer 2013; Damour, Jaranowski & Schäfer 2014]

[Bernard, Blanchet, Bohé, Faye, Marchand & Marsat 2015, 2016, 2017ab]

[Foffa & Sturani 2013, 2019; Foffa, Porto, Rothstein & Sturani 2019]

ADM Hamiltonian

Fokker Lagrangian

Effective field theory
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The Fokker Lagrangian approach to the 4PN EOM

Based on collaborations with

Laura Bernard, Alejandro Bohé, Guillaume Faye,
Tanguy Marchand & Sylvain Marsat

[PRD 93, 084037 (2016); 95, 044026 (2017); 96, 104043 (2017); 97, 044023 (2018); 97, 044037 (2018)]
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Fokker action of N point particles

Gauge-fixed Einstein-Hilbert action of N point particles

SEH =
c3

16πG

∫
d4x
√−g

[
R −1

2
ΓµΓµ︸ ︷︷ ︸

gauge-fixing term

]
−
∑
a

mac
2

∫
dτa︸ ︷︷ ︸

N point particles

The Fokker PN action is obtained by inserting an explicit iterated PN
solution of the Einstein field equations

gµν(x, t) −→ gµν(x;xa(t),va(t), · · ·)

The PN equations of motion of the N particles (self-gravitating system) are

δSF

δxa
≡ ∂LF

∂xa
− d

dt

(
∂LF

∂va

)
+ · · · = 0

The Fokker action is equivalent to the effective action of the EFT
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The gravitational wave tail effect
[Blanchet & Damour 1988; Blanchet 1993, 1997; Foffa & Sturani 2011; Galley, Leibovich, Porto & Ross 2016]

ijQ M klQ ijQ M

4PN

1.5PN

matter source

field point

In the near zone (4PN effect)

Stail =
G2M

5c8
Pf

∫∫
dtdt′

|t− t′| Q
(3)
ij (t)Q

(3)
ij (t′)

In the far zone (1.5PN effect)

htailij =
4G

c4r

GM

c3

∫ t

−∞
dt′Q

(4)
ij (t′) ln

(
t− t′
τ0

)
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Non-locality in time of the 4PN dynamics

1 Because of the tail effect at 4PN order the Lagrangian or Hamiltonian
becomes non-local in time

H [x,p] = H0 (x,p) + Htail [x,p]︸ ︷︷ ︸
non-local piece at 4PN

2 Hamilton’s equations involve functional derivatives

dxi

dt
=
δH

δpi

dpi
dt

= −δH
δxi

3 The conserved energy is not given by the Hamiltonian on-shell but
E = H + ∆H where the AC part of the correction term averages to zero and

∆HDC = −2GM

c3
FGW = −2G2M

5c8
〈
(
Q

(3)
ij

)2
〉

4 On the other hand [DJS] perform a non-local shift to transform the
Hamiltonian into a local one, and both procedures are equivalent

Luc Blanchet (GRεCO) 4PN Fokker action Jussieu 24 / 31



titre

Potential modes versus radiation modes

The potential modes are responsible for conservative near zone effect and can
be computed with the symmetric propagator (when neglecting radiation
reaction effects)

The radiation modes are conservative effects coming from gravitational waves
propagating at infinity and re-expanded in the near zone. The first radiation
effect in the Fokker action is the non local tail effect at 4PN order

To high PN order there is a complicated mix up between potential and
radiation modes encapsuled in the general formula

h̄ = FP
B=0

�−1ret

[
( rr0 )B τ̄

]
︸ ︷︷ ︸

potential modes

−4G

c4

+∞∑
`=0

∂L

{RL(t− r/c)−RL(t+ r/c)

r

}
︸ ︷︷ ︸

radiation modes
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Dimensional regularization of the Fokker action

UV divergences due to the modelling of compact objects by point particles
plague the potential modes starting from the 3PN order

IR divergences in the Einstein-Hilbert part of the Fokker action (potential
modes) occur at the 4PN order

The IR pole in the potential modes should be compensated by an UV pole
coming from the non-local tail term at 4PN order (radiation mode)

UV and IR divergences are treated with dimensional regularization (d = 3 + ε)

Gret(x, t) = − k̃

4π

θ(t− r)
rd−1

γ 1−d
2

(
t

r

)
γs(z) =

2
√
π

Γ(s+ 1)Γ(−s− 1
2 )

(
z2 − 1

)s
(such that

∫ +∞

1

dz γs(z) = 1)

The regularization is followed by a renormalization in the form of shifts (or
contact transformations) of the particles’ world-lines
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Potential mode contribution to IR divergences

The Hadamard regularization of IR divergences reads

IHR
R = FP

B=0

∫
r>R

d3x
( r
r0

)B
F (x)

The corresponding dimensional regularization reads

IDR
R =

∫
r>R

ddx

`d−30

F (d)(x)

The difference between the two regularization is of the type (ε = d− 3)

DI =
∑
q

[
1

(q − 1)ε︸ ︷︷ ︸
IR pole

− ln

(
r0
`0

)]∫
dΩ2+ε ϕ

(ε)
3,q(n) +O (ε)
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UV divergences coming from the radiation mode

1 At 4PN order the radiation mode is due to the presence of the tail effect
described in 3 dimensions by

Htail = −4G

c4

+∞∑
`=0

∂L

{RL(t− r/c)−RL(t+ r/c)

r

}
2 In d dimensions it reads

Htail =

+∞∑
`=0

+∞∑
k=0

1

c2k
∆−kx̂L f

(2k)
L (t)

fL(t) =
(−)`+1k̃

4π`!
FP
B=0

∫ +∞

1

dz γ 1−d
2

(z)

∫
ddx

( r
r0

)B
∂̂L

[M(Λ)(y, t− zr/c)
rd−2

]
y=x

3 In intermediate calculations of radiation modes it is important to keep the
parameter B and apply first the limit B → 0 for any ε > 0
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The B-ε regularization scheme

1 Specializing to the quadratic mass quadrupole interaction FL ∼M ×Qij the
multipolar source term will itself be of the type

M(Λ)L(r, t− zr/c) = r−2d+6−k
∫ +∞

1

dy yp γ 1−d
2

(y)FL(t− (y + z)r/c)

2 After a series of transformations we end up with

fL = FP
B=0

(−)`+k Cp,k` (ε,B)

2`+ 1 + ε

Γ(2ε−B)

Γ(`+ k − 1 + 2ε−B)

∫ +∞

0

dτ τB−2ε F
(`+k−1)
L (t−τ)

3 The numerical coefficient is defined by analytic continuation in B and ε

Cp,k` (ε,B) =

∫ +∞

1

dy yp γ−1− ε
2
(y)

∫ +∞

1

dz (y + z)`+k−2+2ε−Bγ−`−1− ε
2
(z)

4 The regulator B is needed to protect against the divergence of this integral
at infinity (when y, z → +∞, with y ∼ z)
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Ambiguity-free completion of the 4PN EOM

1 From the metric we obtain the equations of motion and then identify the
corresponding gauge invariant term in the Fokker action

2 We find that the limit B → 0 is finite (no poles) and we obtain a simple
closed-form expression for the tail term in an arbitrary d dimension

Stail
F = Kd

G2M

c8

∫∫
dtdt′

|t− t′|2d−5Q
(3)
ij (t)Q

(3)
ij (t′)

with Kd =
12− 12d+ 5d2 − 4d3 + d4

8(d− 1)2(d+ 2)

(
2`20
π

)d−3
Γ(−d2 )

Γ( 7
2 − d)Γ( 5

2 − d
2 )

3 This should correspond exactly to the
(real-space version of the) Feynman diagram
computed in Fourier space by the EFT
community [Galley, Leibovich, Porto & Ross 2016]

ijQ M klQ
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Ambiguity-free completion of the 4PN EOM

1 In the limit ε→ 0 this gives Hadamard’s “Partie finie” (Pf) integral

Stail
F =

G2M

5c8
Pf
τ0

∫∫
dtdt′

|t− t′|Q
(3)
ij (t)Q

(3)
ij (t′)

with τ0 =
`0
c
√
π

exp
[ 1

2ε︸︷︷︸
UV type pole

−1

2
γE −

41

60

]

2 We find that the UV pole exactly cancels the IR pole coming from the
potential (Einstein-Hilbert) part of the Fokker action

3 Adding up all contributions we obtain the complete EOM at 4PN order with
self-consistent derivation of previously conjectured “ambiguity” parameters

4 Recently the EFT approach has also succeeded in a full self-consistent
ambiguity-free derivation of the 4PN EOM [Foffa & Sturani 2019; Foffa, Porto,

Rothstein & Sturani 2019]

5 The three methods (ADM Hamiltonian, Fokker Lagrangian, EFT) are in
perfect agreement on the final result
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