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MODULAR PROPERTIES OF CLOSED SUPERSTRING 
THEORY SCATTERING AMPLITUDES

Methods and Applications 



Modular forms for coefficients of n-point maximal U(1)-violating interactions 

with CONGKAO WEN  Arxiv: 1904.13394

•  SL(2,Z) modular forms and U(1)-violation in IIB superstring

First-order differential relations between coefficients in low energy expansion, which
imply Laplace eigenvalue equations for low order terms.

•  Overview of higher-derivative interactions in closed superstring theory
NON-PERTURBATIVE FEATURES – S-DUALITY IN SUPERSTRING THEORY: 
Connects perturbative with non-perturbative effects.

Constraints imposed by SUSY, Duality

Older work with Pierre Vanhove, Sav Sethi, Michael Gutperle,  Anirban Basu,  ….

•  Elegant connections with graviton scattering amplitudes 

MOTIVATION: HOLOGRAPHIC CONNECTION OF TYPE IIB SUPERSTRING AMPLITUDES WITH 
GAUGE-INVARIANT CORRELATION FUNCTIONS OF N=4 SUSY YANG-MILLS

Montonen-Olive SL(2,Z) duality 
of N=4 SUSY Yang-Mills  

SL(2,Z) S-duality of type IIB 
superstring 



THE LOW ENERGY EXPANSION OF STRING THEORY

EINSTEIN-HILBERT 

1
α′4

∫
d10x

√
− det G e−2φ R + . . . Interactions of other supergravity fields

•  LOWEST ORDER TERM reproduces the results of classical supergravity 

•  Expansion in powers of  α′R , α′D2 , . . .

compactify space-time to dimensions D < 10 

α′ = ℓ2s
ℓs      - STRING 

LENGTH SCALE
STRING COUPLING 
      CONSTANTSCALAR FIELD

  - DILATON
METRIC  – Gµν

e−φ =
1

gs

•  Double expansion – perturbative expansion in powers of g = e−φ

•  HIGHER ORDER TERMS:   

Coefficient depends on moduli (scalar fields).  
Constrained by S-DUALITY

1
α′

∫
d10x

√
− det G F(φ, . . . ) R4 + . . .

(maximal supersymmetry)



d8R4
�

Mass dimension

  N-graviton scattering

N=8 supergravity

THE LOW ENERGY EXPANSION OF (TYPE IIB) STRING THEORY
HIGHER DERIVATIVE CORRECTIONS to Einstein theory

d6 R5

d4 R6

R5 d2 R5

R6

d4 R5

d2 R6

R4 d2R4 d4R4 d6R4

BPS interactions
protected by supersymmetry

11 dimensions
   M-THEORY
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SL(2, Z)
SL(2, Z)

SL(3, Z)⇥ SL(2, Z)

SL(5, Z)

SO(5, 5, Z)

10B 

E6(6)(Z)

E7(7)(Z)
E8(8)(Z)

sequence
on d-torus

Ed+1(Z)

          -violating
(not present in SUGRA)

G8

U(1)
Type IIB

�16



G(R)/K(R)

SCALAR FIELDS (MODULI) AND S-DUALITY

Scalar fields parameterize a symmetric space 

SUPERGRAVITY (low energy limit of string theory): 

G(Z)\G(R)/K(R)
STRING THEORY:

Discrete identifications of scalar fields

(Cremmer, Julia)

Only a discrete arithmetic subgroup 
of          is symmetry of string theory  

G(Z)DUALITY GROUP
G(R)

Maximal compact 
subgroup

STRING PERTURBATION THEORY:    Expansion around boundary of moduli space	

e.g.  in powers of                gs = eφ

+ + +  ….

Vertex operators

g−2 g0 g2

 WORLD-SHEET TORUS

SL(2,Z) Sp(4,Z) “Sp(2h,Z)′′



HOW POWERFUL ARE THE CONSTRAINTS IMPOSED BY
(MAXIMAL) SUSY AND DUALITY ??

Investigate the exact moduli dependence of low lying terms in the low energy expansion.

Duality relates different regions of moduli space –
Connects perturbative and non-perturbative features in a highly nontrivial manner.

Relates strong and weak coupling.

DUALITY GROUP SL(2,Z) a, b, c, d ∈ Z
ad− bc = 1

τ → a τ + b

c τ + d

CONSIDER SIMPLEST EXAMPLE:

inverse string coupling constant

10-DIMENSIONAL  Type IIB - maximal supersymmetry

One complex modulus 	 τ = τ1 + iτ2

τ2 =
1

g
= e−φ



 CHARGE OF ANY FIELD                 (c.f. Schwarz) U(1) Φ = qΦ

•  Fermions transform under the local         but not the global               .
     Other fields transform under               .  

SL(2,R)U(1)
SL(2,R)

NOTE:  CHIRAL U(1) ANOMALY IN TYPE IIB SUPERGRAVITY IN D=10 DIMENSIONS

The anomaly cancelling term breaks                to              . SL(2,R) SL(2,Z)

TRANSFORMATIONS OF MASSLESS TYPE IIB FIELDSSL(2,R)

•  A                transformation induces a compensating         transformation to preserve
     gauge condition.      

U(1)SL(2,R)
e2iφ =

(
cτ + d

cτ̄ + d

)

qF5 = qR = 0dC(4) , RNEUTRAL BOSONS

Fα =

(
dB2

dC(2)

) G = V α
+ Fα

SL(2) doublet

Ḡ = V α
− Fα

SL(2) singlet G, Ḡ

ANTISYMMETRIC TENSORS

Pµ = i
�µ�

2�2
qP = −2 P̄µ = �i

�µ�̄

2�2
SCALAR BOSONS qP̄ = 2

qḠ = 1qG = −1

Λ Λ̄ ψ̄µ qψ̄ = 1
2ψµ qψ = − 1

2FERMIONS qΛ = − 3
2

qΛ̄ = 3
2

•  Fix         gauge -         - embed the          in              .  SL(2,R)U(1)U(1) φ = 0

SL(2,R) matrix      transforms by V α
i → Uα

β V
β
i R

i
j

O(2) ∼ U(1)SL(2,R)
V α

i



SYSTEMATICS OF U(1) VIOLATION

Linearised action

∫
d16θ F [τ0 + Φ(x, θ)] =

∫
d16θ

∑

n

∂nF (τ0)

∂τn0
[Φ(x, θ)]n

•  These 8-derivative interactions are  12 −BPS

•  More generally consider derivatives on these interactions  - e.g.  d4R4 , d6R4

1
4 −BPS 1

8 −BPS

FΛ16 =
∂12FR4

∂τ120
•  Note for future reference that 

F(n)(τ0) =
∂nF (τ0)

∂τn0
= F(4)(�0) R4 + F(5)(�0) G2 R3 + · · · + F(16)(�0) �16

τ = τ0

(Howe, West)

Consider a linearised constrained on-shell SCALAR CHIRAL ON-SHELL SUPERFIELD describing 
fluctuations around           . Function of a single 16-component Grassman spinor,   .  θ

U(1)-charge of = −1

2
θU(1)-charge of superfield = −2

All four-point functions conserve U(1)•  U(1) VIOLATION FOR N-POINT FUNCTIONS:     
Maximal U(1) violation in  

q = −2(n− 4)

�(x, �) = �� + � � + �2 G + �3 d�� + �4 (R4 + dF5) + �5 d2� + �6 d2Ḡ + �7 d3�� + �8 d4�̄ψ∗



HIGHER DERIVATIVE SL(2,Z)-COVARIANT ACTION

•  Degeneracy first arises for n=4,  p=6;  n=5,  p=4;  n=6, p=3 e.g. d6 G4R2

•  The complete nonlinear action is not known - even in the p=0 case (1/2-BPS).
although it is known for backgrounds in which certain bosonic fields vanish 

d6 R4 ∼ (s3 + t3 + u3)R4e.g. for 

•  Derivatives        (contractions suppressed) explicit in amplitude calculationsd2p(i)

n = 4, p = 3

•  The quantity                is the product of n fields in linearised approximation with  Pn({Φ}) q = −2(n− 4)

p = 0
p = 2

R4

d4 R4

d6 R4
Degeneracy in
 kinematic factorsp = 3

q = −2(n− 4)
= −2w

•  Since               carries a non-zero U(1) charge, the moduli-dependent coefficient                
     must transform with a compensating charge.   

Pn({Φ})

NON-HOLOMORPHIC MODULAR FORM

F (p)
w i (τ)

modular weight w

κ = (α′)2 g

The linearised interactions fit into a               - invariant action of the form    SL(2,Z)

Monomial in 
n fields

Sp
n = (κ)

p−1
2

∫
d10x eF (p)

w i (τ) d
2p
(i) Pn({Φ})



NON-HOLOMORPHIC MODULAR FORMS

Consider a                transformation SL(2,Z) τ → aτ + b

cτ + d a, b, c, d ∈ Z ad− bc = 1

φ =
i

2
log

(
cτ̄ + d)

cτ + d

)

e2iwφTransforms with phase – U(1) charge  q = 2w

Dw f (w,−w) = f (w+1,−w−1) D̄w f (w,−w) = f (w−1,−w+1)

Increases the U(1) charge Decreases the U(1) charge

COVARIANT DERIVATIVES: Dw = iτ2
∂

∂τ
+

w

2
D̄w′ = −iτ2

∂

∂τ̄
+

w′

2

A NON-HOLOMORPHIC MODULAR FORM with weight              transforms as(w,w′)

holomorphic anti-holomorphic

f (w,w′)(τ) → (cτ + d)w (cτ̄ + d)w
′
f (w,w′)(τ)

So if w′ = −w f (w,−w)(τ) →
(
cτ + d

cτ̄ + d

)w

f (w,−w)(τ)



NON-HOLOMORPHIC EISENSTEIN SERIES

•                 invariant  (generalises to higher rank duality groups) - weight          form SL(2, Z) (0, 0)

•  Solution of LAPLACE EIGENVALUE EQN.

∆τ E(s, τ) = s(s− 1)E(s, τ)

•  Fourier series E(s, τ) = 2
∞∑

k=0

Fk(τ2) cos(2πikτ1)

E(s, τ) =
∑

(m,n)̸=(0,0)

τ s2
|m+ nτ |2s

•  ZERO MODE               - TWO POWER-BEHAVED TERMS (perturbative) :  k = 0

F0 = 2ζ(2s) τs2 +
2
√
π Γ(s− 1

2 ) ζ(2s− 1)

Γ(s)
τ1−s
2

�n(k) =
X

p|k

pn

divisor sum•  NON-ZERO MODES             - D-INSTANTON SUMk > 0

Fk =
4πs

Γ(s)
|k|s− 1

2σ2s−1 τ
1
2
2 Ks− 1

2
(2πkτ2)

∼ 2πs− 1
2

Γ(s)
|k|s−1σ2s−1(k) e

−2πkτ2
(
1 +O(τ−1

2 )
)



LOW ORDER INTERACTION COEFFICIENTS

g
1
2 E( 5

2 , τ) = 2ζ(5) g−2 +
4

3
ζ(4) g2 +

∑

k=0

(. . . )σ4(k) e
−2π|k|τ2e2πikτ1

g−
1
2 E( 3

2 , τ) = 2ζ(3) g−2 + 4ζ(2) g0 +
∑

k=0

(. . . )σ2(k) e
−2π|k|τ2e2πikτ1

Laplace equations motivated by supersymmetry and various dualities

for U(1)-conserving four-point amplitudes

NON-RENORMALISATION BEYOND 1 LOOP FOR R4

Perturbative terms:            tree-level        genus-one             D-instantons
1
2 − BPS

(α′)−1 R4

(
∆− 3

4

)
F (0)
0 (τ) = 0 F (0)

0 (τ) = E( 3
2 , τ)

Perturbative terms:        tree-level        genus-two             D-instantons 

NON-RENORMALISATION BEYOND 2 LOOPS FOR 1
4 −BPSd4R4

∆ = τ22 (∂2
τ1 + ∂2

τ2) = 4∂τ ∂τ̄

α′ d4 R4

(
∆− 15

4

)
F (2)
0 (τ) = 0 F (0)

0 (τ) = E( 5
2 , τ)



PRECISE AGREEMENT WITH EXPLICIT PERTURBATIVE STRING THEORY MULTI-LOOP CALCULATIONS 

NOT Eisenstein series but satisfies INHOMOGENEOUS Laplace equation

(α′)2 d6 R4

THE SOLUTION OF THIS EQUATION HAS SOME WEIRD AND WONDERFUL FEATURES.

R4
The square of the
coefficient of 

(∆− 12) E(3)
0 (τ) = −E( 3

2 , τ)E( 3
2 , τ)

ZERO MODE OF SOLUTION (zero net D-instanton number):

SUM OF D-INSTANTONSGENUS ZERO GENUS ONE GENUS TWO GENUS THREE

q E(3)
0 (τ)

∣∣∣∣∣
zero
modes

=
2

3
ζ(3)2 g−2+

4

3
ζ(2) ζ(3) g0+4ζ(4) g2+

4

27
ζ(6) g4+

∑

k

cke
−4πk/g

[PARENTHETICAL COMMENT:   THE NON-RENORMALISATION STATEMENTS IN MAXIMAL SUPERGRAVITY 
ARE IN AGREEMENT WITH THESE STRING THEORY RESULTS.]

F (3)
0 (τ) = E(3)

0 (τ)



FIRST-ORDER EQUATIONS FOR U(1)-VIOLATING COEFFICIENTS

so Ew(s, τ) =
2w(s− 1)!

s+ w − 1)!
Dw−1 . . .D0 E0(s, τ) =

∑

(m,n)̸=(0,0)

(
m+ nτ̄

m+ nτ

)w τs2
|m+ nτ |2s

Likewise, Ew−1(s, τ) =
s− w

2
D̄wEw(τ)

NON-HOLOMORPHIC EISENSTEIN MODULAR FORMS 	

∆w
+ = 4 D̄w+1Dw ∆w

− = 4Dw−1D̄wLAPLACE OPERATORS ∆w
+ −∆w

− = −2w

Eisenstein series with holomorphic/anti-holomorphic  weights              defined by (w,−w)

Ew+1(s, τ) =
s+ w

2
DwEw(τ) (arbitrary normalisation)FIRST-ORDER EQUATIONS

tree-level    genus-one              D-instantons        anti-D-instantons

e,g,

τ2 = 1/g

Ew( 3
2 , τ) = 2ζ(3) τ

3
2
2 +

4ζ(2)

1− 4w2
τ
− 1

2
2 +

∞∑

K=1

(
CK,w(τ2)e

2πiKτ1 + CK,−w(τ2)e
−2πiKτ1

)

LAPLACE EQUATIONS ∆−Ew = (s(s− 1)− w(w − 1))Ew

E0(s, τ) ≡ E(s, τ)

The coefficient of a term violating the U(1) charge by                                    units is given byq = −2(n− 4) = −2w

F (0)
n−4(τ) = c(0)n Ew( 3

2 , τ)



½-BPS AND ¼-BPS U(1)-VIOLATING COEFFICIENTS

d4R4 d4G2R3 d4G4R2 . . . d4G8 . . . d4Λ16α′ :

n = 4− w 4 5 6 8 12

(α′)−1 : R4 G2R3 G4R2 . . . G8 . . .Λ16

Supersymmetry together with S-duality: 

•  Satisfy sequence of Laplace eigenvalue equations.

•  Coefficients determined by amplitude analysis

F (0)
n−4(τ) = c(0)n Ew( 3

2 , τ)

F (0)
n−4(τ) = c(2)n Ew( 5

2 , τ)



1/8-BPS U(1)-VIOLATING COEFFICIENTS

RECALL W=0 CASE:
∆ = ∆0

+ = ∆0
−

4 D̄D E(3)
0 = 12E(3)

0 − (E0( 3
2 ))

2

D̄E(3)
1 = E(3)

0 − 1

12
(E0( 3

2 ))
2

INHOMOGENEOUS 
FIRST-ORDER EQUATION

Applying      and requiring consistency with w=0 Laplace equation leads to D̄

Apply      to            equation, D 4DD̄(DE(3)
0 ) = 12(DE(3)

0 )−D(E0( 3
2 ))

2w = 0

(α′)2 : d6(i)R
4 d6(i)G

2R3 d6(i)G
4R2 . . . d6(i)G

8 . . . d6(i)Λ
16

4 5 6 8 12

n = 4 + w

n = 4 + w

F (3)
n−4,i(τ) = c(3)n,i E

(3)
w (τ)

TWO INDEPENDENT KINEMATIC STRUCTURES 

w = 2
d6(1) ∼

∑

i<j

s3ij +
3

8

∑

i<j<k

s3ijk d6(2) ∼
∑

i<j

s3ij −
1

2

∑

i<j<k

s3ijk

Tree-level contribution Does not contribute at tree-level 

n = 6

FIRST-ORDER EQUATIONDefine:CONSIDER W=1 CASE: E(3)
1 = 2DE(3)

0

LAPLACE EQUATIONw = 1∆−E(3)
1 = 12E(3)

1 − 3E1( 3
2 )E0( 3

2 )



1/8-BPS COEFFICIENTS -  THE W=2, n=6 CASE

E(3)
2,i d

6
(i)

(
G4R2 + Λ8R2 + . . .

)            Labels distinct    
 kinematic structures 
– motivated by 
amplitude analysis

i = 1.2

The factor  E(3)
2,1 (τ) d

6
(1) contains the tree-level contribution 

i = 1

i = 2
The factor                   does not have a tree-level contributionE(3)

2,2 (τ) d
6
(2)

∆−E(3)
2,2 = 10E(3)

2,2 − 5a

12
(E0( 3

2 )E2( 3
2 )− E1( 3

2 )E1( 3
2 )) .LAPLACE EQUATION 

1/8-BPS COEFFICIENTS -  THE W>2, n>6 CASES

The extension to all terms of the form E(3)
2,i (τ) d

6
(i) Pn({Φ})

∆−E(3)
2,1 = 10E(3)

2,1 − 15

2

(
E0( 3

2 )E2( 3
2 ) +

3

5
E1( 3

2 )E1( 3
2 )

)
Leads to LAPLACE EQUATION 

Then consistency with        equation  E(3)
1Define: E(3)

2,1 = 2DE(3)
1

and  FIRST-ORDER EQUATION D̄E(3)
2,1 = 5DE(3)

1 − 3

2
E1( 3

2 )E0( 3
2 )

E(3)
2,2 =

a

5
(E(3)

2,1 − 2E1( 3
2 )E1( 3

2 ))

FIRST-ORDER EQUATION 

Fix the constant a by
 one-loop calculation. 

Tree-level term cancels 
in this combination
Leading term from 
one-loop contribution.

D̄E(3)
2,2 = a(E(3)

2,1 − 1

2
E1( 3

2 )E1( 3
2 ))



SUPERSTRING SCATTERING AMPLITUDES

Redefine coordinate τ → Z Z =
τ − τ0

τ − τ̄0
Transforms with U(1) charge = -2 
                under SL(2,Z)

F0(τ) =
∞∑

w=0

2w Dw−1 . . .D0 F0(τ)

∣∣∣∣
τ=τ0

Zw/w! + · · ·

(i)  Amplitudes with external     from  
Φ

Pn(Φ)

Z

Z1

2

3 n

n+ 1

n+m

DmF (p)
n−4,i(τ

0)

Amplitudes with m   s and n    s  Z Φ

(very sketchy)

τ̂ =
i

2

τ − τ0

τ02

Not covariant
does NOT transform

covariantly

(ii)  Amplitudes with external fluctuations of   τ

F0(τ) = F (τ0) + 2iτ02 ∂τ0F (τ0)τ̂ − 2(τ02 )
2 ∂2

τ0F (τ0)τ̂2 + · · ·

Recall Sp
n = (κ)

p−1
2

∫
d10x eF (p)

w i (τ) d
2p
(i) Pn({Φ})



Â4(sij) = 2 �� 1
2 �

3
2
2 �(3) + �

1
2 �

5
2
2 �(5) O(2)

4 +
2

3
� �3

2 �(3)2 O(3)
4 + · · ·

Â5(sij) = 3 �� 1
2 �

3
2
2 �(3) +

5

2
�

1
2 �

5
2
2 �(5) O(2)

5 + 2� �3
2 �(3)2 O(3)

5 + · · ·

Â6(sij) =
15

2
�� 1

2 �
3
2
2 �(3) +

35

4
�

1
2 �

5
2
2 �(5) O(2)

6 + 8 � �3
2 �(3)2 O(3)

6,1 + · · · ,

Low-energy expansion of tree-level amplitudes 
                                   (thanks to Oliver Schlotterer)

A(p)
n = κ

p−1
2 F (p)

n−4(τ
0) δ16(Qn) Â

(p)
n (sij)

Ten-dimensional spinor-helicity formalism encapsulates supersymmetric amplitudes.

Super-Amplitudes

Enforces supersymmetry – packages the contributions of terms with 16  θ
and          fluctuations          Z, Z̄Pn(Φ)

Coupling constant dependence Dependence on momenta

κ2 = (α′)4 τ−2
2

O(3)
6,1 =

1

32

⎛

⎝10
∑

1≤i<j≤6

s3ij + 3
∑

1≤i<j<k≤6

s3ijk

⎞

⎠

O(2)
n =

1

2

∑

1≤<j≤n

s2ij O(3)
n :=

1

2

∑

1≤i<j≤n

s3ij

where

n = 6

n ≤ 5



Soft Limits
An(X,Zn)

∣∣
pn→0

= 2DAn−1(X) ,

More explicitly F (p)
n−4(τ

0)O(p)
n,i

∣∣
pn→0

= 2DF (p)
n−5(τ)

∣∣
τ=τ0O

(p)
n−1,i

O(3)
6,2 =

1

8

∑

permutation

s12s34s56
O(3)

6,1 =
1

32

⎛

⎝10
∑

1≤i<j≤6

s3ij + 3
∑

1≤i<j<k≤6

s3ijk

⎞

⎠

n = 6, p = 3

O(3)
6,2

∣∣
pi→0

→ 0O(3)
6,1

∣∣
pi→0

→ 0

O(3)
n,1 =

1

32

⎛

⎝(28− 3n)
∑

i<j

s3ij + 3
∑

i<j<k

s3ijk

⎞

⎠ O(3)
n,2 = (n � 4)

�

i<j

s3
ij �

�

i<j<k

s3
ijk

n > 6, p = 3

O(2)
n,1

∣∣
pn→0

= O(2)
n−1,1O(3)

n,1

∣∣
pn→0

= O(3)
n−1,1

n ≤ 5 p = 2, 3

O(3)
n

∣∣
pn→0

= O(3)
n−1O(2)

n

∣∣
pn→0

= O(2)
n−1

O(2)
n =

1

2

∑

1≤<j≤n

s2ij O(3)
n =

1

2

∑

1≤i<j≤n

s3ij



e.g. Amplitudes with a    and a  Z Z̄

D̄D E(3)
0 (τ0) + aE(3)(τ0) + bE0( 3

2 , τ
0)E0( 3

2 , τ
0) = 0

E1(τ) = 2DE0(τ)  gives Laplace eqn.

D̄ E(3)
1 (τ0) + a E(3)

0 (τ0) + bE0( 3
2 , τ

0)E0( 3
2 , τ

0) = 0

Supersymmetry forbids a supersymmetric contact interaction  - implies a relation of form:

Coefficients fixed by comparison with tree-level amplitudes

Z

Z̄

D̄ F (3)
1 (�0) Z̄

Z

F (3)
0 (�0)

Z̄

Z

F (3)
0 (�0)

Z̄

Z

F (3)
0 (�0)

Z

Z̄

F (2)
R5 (�0)

Z̄

Z

F (0)
0 (�0) F (0)

0 (�0)

(f)



COMMENTS

•  We have determined non-perturbative behaviour of all “protected’’ terms in the low-energy

     expansion of the form                                 - up to overall constantsE(p)
w,i(τ) d

2p
(i) Pn({Φ}) c(p)n,i (n = 4 + w)

that are determined from tree (or one-loop) amplitudes and (in principle) by supersymmetry.

•  RECALL Leading D-instanton terms match beautifully with instanton contributions to 
     correlation functions in large-N limit of Yang-Mills – HOLOGRAPHIC MATCHING.  

•  These interactions are related by FIRST-ORDER DIFFERENTIAL EQUATIONS – consequence of 
     SUPERSYMMETRY as is apparent from the amplitude calculations. 

•  LAPLACE EQUATIONS follow as consequence of first-order equations.
Leading to the same non-renormalisation conditions as in maximal supergravity. 

•  Generalisations to compactified theory. 

The           cases do not arise in maximal supergravity
•  These violate the continuous U(1) R-symmetry in string theory by q= -2w units. 

w ̸= 0



•  SUGGESTS A HOLOGRAPHIC ORIGIN FOR THESE AMPLITUDES.     

gYM           FIXED AND               PRESERVES                MONTONEN-OLIVE DUALITYN → ∞ SL(2,Z)

Unconventional limit of large-N  SU(N)             supersymmetric Yang-Mills :  Basu, MBG, Sethi (2004)N = 4

Leading behaviour                of correlation functions (plausibly) satisfies the                  
string theory differential equations discussed in this talk.  

O((α′)−1)O(N1/2)

∂

∂τ
⟨ O1 O2 . . .On⟩Consider derivative of  Yang - Mills correlation function

complex coupling


