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Introduction

Introduction

@ membranes: D-dimensional extended objects embedded in a

d-dimensional space subject to quantum and/or thermal
fluctuations
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Introduction

@ High energy physics: (sum over) surfaces occurs within, e.g.:

e strong coupling expansion of lattice gauge theory

e discretization of Euclidean quantum gravity

@ string theory (Polyakov, David, Foerster (70's - 80's))

o a string sweeps out a surface (worldsheet)

(see also branes ... (Polchinski 90's, ...))




Introduction

@ chemical physics / biology :

(Nelson - Peliti, Helfrich, , Aronovitz - Lubensky, David - Guitter, Le Doussal -
Radzihovsky, ... (70's - 90's))

—> structures made of amphiphile molecules (ex: phospholipid)

e one hydrophilic head
e hydrophobic tails

= bilayers = living cell

Extracellular Fluid

——— Phospholipid Bilayer ——
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Introduction

@ condensed matter physics: graphene, silicene, phosphorene . ..

uni-layers of atoms located on a honeycomb lattice
@ striking properties:

o high electronic mobility, transmittance, conductivity,. ..
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Introduction

@ mechanical properties: both extremely strong and soft
material:

— example of genuine 2D fluctuating membrane
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Introduction

Generic questions :

o effects of — thermal — fluctuations ?

@ does a flat — ferromagnetic-like — phase exist at low
temperatures ?




Fluid membranes vs polymerized membranes

Fluid membranes vs polymerized membranes

Fluid membranes

@ weakly interacting molecules

o free diffusion inside the membrane plane = vanishing shear
modulus
e very small compressibility and elasticity = no elastic energy

= main contribution to the energy: bending energy
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Fluid membranes vs polymerized membranes

Free energy of fluid membranes
@ point of the surface described by the embedding:

r: o= (0c',0%) = r(c',0%) € R?

e (0',0%) = local coordinates on the membrane

Or
e tangent vectors: €, = ——— = 0, a=1,2
X do@
. N e; X ey
e unit-norm normal vector : i =
\el X e2|
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Fluid membranes vs polymerized membranes

@ curvature tensor K: K, ;, = —1. dpe, = €e,. Opid
o K., = locally diagonalized with eigenvalues K7 and Ky

@ mean or extrinsic curvature:

1 1
JH = 5([(1 +K2) = §TrK

o Gaussian or intrinsic curvature: K = K; K9 = det Kab

= no role with a fixed topology (Gauss-Bonnet theorem)

— bending energy:
F = ;/dZU\/g H2
@ r: rigidity constant
® gy, = 0,r.0,xr = metric induced by the embedding r(o)
@ /g = \/det g, ensures the reparametrization invariance
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Fluid membranes vs polymerized membranes

Fluctuations 7

@ Low temperatures: Monge parametrization
x =01, y =09 and z = h(x,y) with h height, capillary, mode

o r(z,y) = (z,y, h(z,y))

@ f(z,y) = M e ii(z,y).e; = cosb(z,y) =

V1+|Vh]

1

V1+|Vh]

>

v
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Fluid membranes vs polymerized membranes

o Free energy:
Fe ;/dQX (AR)? + O(n*)

@ is there a flat phase 7 = fluctuations of 6(z,y):

<H(m,y)2>:kBT/d2 L kT (1) S oo

K q2 K qa ) ¢—0

— no !
= no long-range order between the normals

in agreement with Mermin-Wagner theorem
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Fluid membranes vs polymerized membranes

At next order in h, k is renormalized and decreases at long

distances.:
kr(q) =Kk — SkpT' (d In L
R\ = 2r \ 2 qa

= divergence of (§(x,y)?): worse

= strong analogy with 2D-nonlinear & model:
o exp. decreasing correlations:  (S(r).S(0)) ~ e /¢

e correlation length — mass gap: £~ ae2mr/3kBT(d/2)

@ nothing really new but N — 2 = d/2
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Fluid membranes vs polymerized membranes

Polymerized membranes

- chemical physics/biology: red blood cell, ...
- condensed matter physics: graphene, phosphorene, ...

@ membranes made of molecules interacting by V' (|r; —rj|)

= bending and elastic energy contributions
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Fluid membranes vs polymerized membranes

Free energy of crystalline membranes

e Flat reference configuration: ro(z,y) = (x,y,z = 0)
e Fluctuations: r(z,y) = ro+ u.(z,y) €1 + uy(x,y) ea + h(z,y) 0

= height field and u; = phonon fields

Z
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Fluid membranes vs polymerized membranes

o Free energy:

F ~ /de [;(Ah)Q + pu(uap)® + ;(Uab)Q]

Ugp = Stress tensor ~ encodes fluctuations with respect to the
flat configuration rq
Uy = % [8a,ub + Opug + Ogu.0pu + O h 8bh]

k = rigidity constant A, p = elastic coupling constants

@ coupling between height and phonon fluctuations

— frustration of height fluctuations
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Fluid membranes vs polymerized membranes

First approach of fluctuations

Gaussian approximation on phonon fields:
1
Ugh = 5 [Oqup + Optig + Ogh Oph)
integrate over u:

K
Fepp= g / d*x (M) + < / dx (P 0,1 dyh)°

o PL = 6. — 0,05/ V?

@ « = bending, rigidity modulus

o K =4u(A+p)/(21 + A): Young elasticity modulus
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Fluid membranes vs polymerized membranes

@ Self-consistent screening approximation (SCSA) ~
Schwinger-Dyson equation in the large d limit (Nelson and Peliti 87)
. .72
[Qa ng, Qb]
rerr(a+k)la+k|*

Fdeff(q) =K+ kBT]C/de

VEBTIC
q
i.e. effective rigidity increased by fluctuations !

— meff(q = 0) ~

@ fluctuations of normal vector i:

1
0(z,y)?) =k T/d2 — < !
<( y)> B q/ieff(Q)QZ

= Long-range order between normals in D = 2 (and less) ! J

19/48



Fluid membranes vs polymerized membranes

@ no trouble with Mermin-Wagner Theorem

F,t can be rewritten as an interaction between Gaussian
curvatures:

K

Fys=% [@x@np+x [ KeGx-yKE)
x?y
K = Gaussian curvature:
K(x) = —A(9.h Oph) + 050 (0gh Oph)
with a non decreasing kernel:

Gx—y)x|[x—yl’In|x —y|

—> evades Mermin-Wagner Theorem !
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Fluid membranes vs polymerized membranes

@ polymerized membranes: possibility of spontaneous symmetry
breaking in D = 2 and even in D < 2

—> |low-temperature, ordered, flat, phase with non-trivial
correlations in the |.R.

Ghn(q) ~ ¢~ @7

Guu(q) ~ q*(6*D*27/)

with 7 # 0 = associated e.g. to stable sheet of graphene
@ a challenge: to compute 7

@ which also provides the lower critical dimension:
Dic(n) =2—-n
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Renormalization group approaches to polymerized membranes

Renormalization group approaches to polymerized
EINERES

One-loop perturbative approach of the flat phase
(Aronovitz, Golubovi¢ and Lubensky 88; Guitter, David, Leibler, Peliti 89)

F ~ /dDX [;(Ah)2 4 M(Uab)2 + %(uaa)Q

=—> perturbative expansion in A and u

B-functions in D = 4 — ¢ at one-loop order:

dc,u2
O = (—6+2n)u+96w2

de (622 + 6 2
DA = (et amn 4 JelOX + 6t )

9672

with d. = d — D (nb of Goldstone modes) and 1 = 5u(A + u)/(2u + A)




Renormalization group approaches to polymerized membranes

@ 3 unstable fixed points P, P> and P

@ a non-trivial fixed point P, that governs the flat phase and is
located on the submanifold 3\ + =0
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Renormalization group approaches to polymerized membranes

Physical properties

12¢

@ a nonvanishing value of n = m

with: n(e =2,d = 3) = 0.96
e increased rigidity: keps(L) ~ L"

o decreased elasticity modulus: Kcff(L) ~ L2127

= consequences of “ripples”
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Renormalization group approaches to polymerized membranes

Physical property

__expansion,,

@ Poisson ratio : v = .
expansion,,

@ as the flow runs towards 3\ + pu =0: v =

in agreement with experiments

A*

3N+ 2u*

Everything seems to be fine ...
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Renormalization group approaches to polymerized membranes

However:

o flat phase properties (7 and /) poorly determined in D = 2 —
far from D =4 —and d = 3

@ SCSA or weak-coupling expansion extremely tedious beyond
leading order due to :

e multiplicity of fields: A, u and the coupling constants A, w
e derivative nature/complexity of the interaction

— use of a non perturbative RG approach
(J.-P. Kownacki and D. Mouhanna 08)
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Renormalization group approaches to polymerized membranes

Non perturbative renormalization group

Wilson program: (K.G. Wilson, L.P. Kadanoff, J. B. Kogut ... (70's))

@ gradual integration over high momentum fluctuations

2 / D¢ o~ HI
splitting:  ((q) = ¢~ (q) +¢<(9)

" (>(@)=¢(g) for k<g<A=a'
with: {C<(q)=<(q) for 0<q<k

Wilson-Polchinski equation:
52Hk7 5Hk: 6Hk:

1
OkH[C<] = 2/q 0 C>(a). <5C<(q)5§<(—q) ~ 5((a) 5C<(—q))




Renormalization group approaches to polymerized membranes

o formulation in terms of Hamiltonian not very efficient ... )

@ best formulation in terms of running effective action (or
running Gibbs free energy) I'; in which high-momentum
fluctuations — k < ¢ < A — have been integrated out
(Wetterich (90's))

o I'y_n = H[¢] = microscopic scale Tin=58
o I'y =T%[¢] = running scale k
e I'y—g=T[¢] = macroscopic scale 1

Theory space

C3...Cp,
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Renormalization group approaches to polymerized membranes

I'y, follows an exact equation (Wetterich (93)):

1 1
OTild] = 5 / Te AR (6] + Ri(g?)
k

with Ry (q?) = cut-off function

@ one-loop structure close to that of perturbative field theory

hTrlel = 3 O
but:

o Ri(g?) o k* = |.R. finiteness

o Ri(g>) — 0= U.V. finiteness

q—o0

° F](f) [¢]i; = full, i.e. field-dependent propagator !

= non perturbative in the coupling constants, d, D, etc ! h
29 /48




Renormalization group approaches to polymerized membranes

o Effective action I';[0,r] for membranes:
(Kownacki and Mouhanna 08)

e ansatz for I'y, [0,r]: bending and elastic terms
Ty [0,1] = / 4Px 5 (Ar)* + A (Qur-Dur)? + i (Dur-Our)?
-+ power-counting non renormalizable terms !

= compute FS) [0r]

—> plug it into the Wetterich's equation

— compute the (non perturbative) RG equations
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Renormalization group approaches to polymerized membranes

256 d \2 Ap
D(D +2)(D +4)(D +8)

128 d (A2 4+ 2(D + 2)A\u+ D(D + 2)p?)Ap
D(D +2)(D +4)(D + 8)

Op = (D—4+2n)pu+

with the running anomalous dimension

. 128(D + 4)(D? — 1)A(A +2u)Ap
"= D2(D2 + 6D + 8)(\ + p) + 128(D% — 1) A(A + 210)Ap

with Ap = Ap(8 + D) and Ap = 2-P~17=P/2)T(D/2)

= non polynomial /non perturbative in A and p
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Renormalization group approaches to polymerized membranes

Results: (Kownacki and Mouhanna 08)

o flow runs towards the hypersurface: (2 + D)X\ +2u =0

A* 1
—inany D |

— VT DO+ 3

o 77 = 0.849 that compares very well to Monte Carlo

computation with an interatomic potential for graphene:
7 = 0.850 ! (Los, Katsnelson, Yazyev, Zakharchenko and Fasolino 09)

At higher orders. ..? )
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Renormalization group approaches to polymerized membranes

@ no corrections at higher orders in (9r)? |
(Essafi, Kownacki and Mouhanna 14)

@ no quantitative corrections at all orders in 9% |
v=—1/3and n=0.85
(Braghin and Hasselmann 10)

— extreme — unexpected — stability of this approach

also: high powers in fields and field-derivatives in I'y[0,r] <=
high orders of perturbation theory

Question: what is structure/properties of this theory at higher
orders in perturbation in A and x ?
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Renormalization group approaches to polymerized membranes

Polymerized membranes at two-loop order

Polymerized membranes at two-loop order
(Coquand, Mouhanna and Teber, to be published)
L1 -
Sla, b = 5 / dPzx [K(Ah)2

—

+u <(8ZUZ)2 I aiuﬁjuj == 8iuj(aiﬁ.6jh) +1 7+ %((%H@,HV) :|

Properties
@ derivative field theory = momentum dependent vertices

@ theory "living” in space-time: no internal degrees of freedom
ho witha=1...d—D and u; with¢=1...D
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Renormalization group approaches to polymerized membranes

Feynman rules

height-field propagator:

e} « q /8
af 56
G ="r= ——

Phonon-field propagator:

. 1 - 1 )
Gil(9) = —Pi(a) + LA
/) q J
= "\ N\ANN
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Renormalization group approaches to polymerized membranes

Feynman rules

3-points (momentum-dependent) vertex: hhu

V(@) = =5 | Mar-a2)d + n((a-01)a + (2-02) 1) | dap
9 «
i g
Q@ p
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Renormalization group approaches to polymerized membranes

Feynman rules
4-points (momentum-dependent) vertex: hhhh

1
Wapvo(q) iy, {)\ [(QI-Q2)(Q3-Q4)5046579

+ (1-43)(g2-04)8a~ 00

+ (Q1-Q4)(Q2-Q3)5a65ﬁ7}

< M[((QL%)(%%) + (q1.94)(92-93)) 6a30+0
+ ((q1-94)(92.43) + (91-92)(43-04)) dary O30

+ ((q1-92)(g3-q4) + (Q1'q3)((I2'Q4))5a956'y} }

a q g3, 0

B q q4 7 B7 /48



Renormalization group approaches to polymerized membranes

Good news: it is sufficient to renormalize the propagators ! J
One-loop
q
L m
B, -
1—loop
pP—9q
. q
[ A } = \N\AANN L
1—loop
pP—q
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Renormalization group approaches to polymerized membranes

Two-loop

[
= +AO+ + o/ + +o—w~o+

+ /-@-/ + +c@c+ +  fo~mref

[Z4(p)]

2—loops

_l’_

Involve integrals of the kind — and kite ! :

. dPk1dPky
J2(D,p,a1,az,0¢370é4,045)= S 2a = 7 \2ao (= I \2aa 12004 .20
(p—k )21 (P — k1 — k2)2%2(p — k2) 3ki Ky




Renormalization group approaches to polymerized membranes
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Renormalization group approaches to polymerized membranes

Results
@ A non-trivial stable fixed point P, that controls the flat phase
with: 3272, 3272(19d, + 156)

A* = —¢ .
“d.+24 7 T 5(do+20)3
. 9672 o 32m%(47d, + 228)
=¢ =
=g+ 24 5(d, + 24)3
but the flow is no longer goes towards the submanifold
AN+ pu=01

Physical properties
@ Poisson ratio:
one-loop: v = —% = —0.3333 and two-loop: v = —0.2460 !

@ anomalous dimension in D =2 (i.e. e=2...) and d = 3:
one-loop: 77 = 0.96 and two-loop: 17 = 0.9139 to be compared
ton =0.85 b e




Conclusion

Conclusion

@ Satisfying qualitative and quantitative description of
polymerized membranes by means of non perturbative RG
and stability with respect to higher orders

@ One exhibits a conflict with perturbation theory
= strong dependence with respect to the order

@ Observed in other situations: )
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Conclusion

@ Anisotropic membranes = tubular phase

Flat Tubular Crumpled
Phase Phase Phase

@ anisotropy between the x and y directions
_ Z U
Tyfr] = / 4P dy { SV (0F)? + a(0ur)? + 2 (0yr.0,)? )

@ transition between a crumpled phase with ¢, = 0 at high T’
and a tubular phase with ¢, # 0 at low T’
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Conclusion

Upper critical dimension: D = 5/2 close to D = 2
—> ¢ = 5/2 — D expansion in good position ?

e perturbatively: n = —0.0015 <0 ! (rigidity: kK ~ 1/q")
e-expansion: ‘“unreliable” and ‘“qualitatively wrong”
(Radzihovsky and Toner 95)

e non perturbatively:
(Essafi, Kownacki and Mouhanna 11)
n = 0.358(4) > 0 in agreement with MC data ...

44 /48



Conclusion

@ Disordered membranes
(Coquand, Kownacki, Essafi and Mouhanna 18)

disorder exists: imperfect polymerization, vacancies, proteins,

— elastic (a) and curvature (b) disorder

ms&’%f@zzrmﬁ%

e,
mﬁm
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Conclusion

Hamiltonian: c(x) and m(x) Gaussian random fields
/d x{ Bl — c(x))2
+ )\(aur(x).&,r(x) —duv m(x))

+ 1(8ur(X).-0,:x(x) = D(2)) 2}

2

— modelize curvature and elasticity disorder

@ quenched disorder = average over disorder of F = log Z
using replica trick:

zZn —1
log Z = lim

n—0 n
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Conclusion

— effective action with interacting replica :

Il = /ddm 3 {g (aiama(x))2 + %(&ra(x).&ra(x))Q
+ 4 (@ra(x).ajra(x))Q}

A, o
— 7 Z 81(911‘ (X).ajajlﬁ (X)

a,f

—% 2 (0 (). 05 () ) (051” (). 00" (x) )

=t Z (&ra (x).Bjro‘(x)) (&rﬁ (x).E)jrB(x))

o,B

| P

with Z,{,Z,\,ZH disorder variances
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Conclusion

@ non perturbative RG approach : stable fixed point
(Coquand, Essafi, Kownacki, Mouhanna 18):
not seen within perturbation theory

@ at one-loop order (Morse and Lubensky 92)

@ at two-loop order ... (Coquand, Mouhanna and Teber, to be
published)

@ there is a clear need for a clarification of the link between
perturbative and non perturbative approaches

@ require studies of high orders of perturbation theory
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