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Introduction

membranes: D-dimensional extended objects embedded in a
d-dimensional space subject to quantum and/or thermal
fluctuations
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High energy physics: (sum over) surfaces occurs within, e.g.:

strong coupling expansion of lattice gauge theory

discretization of Euclidean quantum gravity

string theory (Polyakov, David, Foerster (70’s - 80’s))

a string sweeps out a surface (worldsheet)

(see also branes . . . (Polchinski 90’s, . . . ))
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chemical physics / biology :

(Nelson - Peliti, Helfrich, , Aronovitz - Lubensky, David - Guitter, Le Doussal -

Radzihovsky, . . . (70’s - 90’s))

=⇒ structures made of amphiphile molecules (ex: phospholipid)

one hydrophilic head
hydrophobic tails

=⇒ bilayers =⇒ living cell
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condensed matter physics: graphene, silicene, phosphorene . . .

uni-layers of atoms located on a honeycomb lattice

striking properties:

high electronic mobility, transmittance, conductivity,. . .
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mechanical properties: both extremely strong and soft
material:

=⇒ example of genuine 2D fluctuating membrane
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Generic questions :

effects of – thermal – fluctuations ?

does a flat – ferromagnetic-like – phase exist at low
temperatures ?
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Fluid membranes vs polymerized membranes

Fluid membranes

weakly interacting molecules

free diffusion inside the membrane plane =⇒ vanishing shear
modulus
very small compressibility and elasticity =⇒ no elastic energy

=⇒ main contribution to the energy: bending energy
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Free energy of fluid membranes

point of the surface described by the embedding:

r: σσσ = (σ1, σ2)→ r(σ1, σ2) ∈ IRd

r

1e
e 2

n

σ1

σ2

x

y

z

• (σ1, σ2) ≡ local coordinates on the membrane

• tangent vectors: ea =
∂r

∂σa
= ∂ar a = 1, 2

• unit-norm normal vector : n̂ =
e1 × e2

|e1 × e2|
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curvature tensor K: Kab = −n̂. ∂bea = ea. ∂bn̂

Kab =⇒ locally diagonalized with eigenvalues K1 and K2

mean or extrinsic curvature:

H =
1

2
(K1 +K2) =

1

2
TrK

Gaussian or intrinsic curvature: K = K1K2 = detK b
a

=⇒ no role with a fixed topology (Gauss-Bonnet theorem)

=⇒ bending energy:

F =
κ

2

∫
d2σσσ
√
g H2

κ: rigidity constant

gµν = ∂µr.∂νr ≡ metric induced by the embedding r(σσσ)
√
g =

√
det gµν ensures the reparametrization invariance
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Fluctuations ?

Low temperatures: Monge parametrization
x = σ1, y = σ2 and z = h(x, y) with h height, capillary, mode

r(x, y) = (x, y, h(x, y))

n̂(x, y) =
(−∂xh,−∂yh, 1)√

1 + |∇∇∇h|2
• n̂(x, y). ez = cos θ(x, y) =

1√
1 + |∇∇∇h|2
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Free energy:

F ' κ

2

∫
d2x (∆h)2 +O(h4)

is there a flat phase ? =⇒ fluctuations of θ(x, y):

〈θ(x, y)2〉 = kBT

∫
d2q

1

κ q2
' kBT

κ
ln

(
1

qa

)
→
q→0
∞

=⇒ no !
=⇒ no long-range order between the normals

in agreement with Mermin-Wagner theorem
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At next order in h, κ is renormalized and decreases at long
distances.:

κR(q) = κ− 3kBT

2π

(
d

2

)
ln

(
1

qa

)
=⇒ divergence of 〈θ(x, y)2〉: worse

=⇒ strong analogy with 2D-nonlinear σ model:

exp. decreasing correlations: 〈Ŝ(r).Ŝ(0)〉 ∼ e−r/ξ

correlation length – mass gap: ξ ' a e2πκ/3kBT (d/2)

nothing really new but N − 2 =⇒ d/2

14 / 48



Introduction
Fluid membranes vs polymerized membranes

Renormalization group approaches to polymerized membranes
Conclusion

Polymerized membranes

- chemical physics/biology: red blood cell, . . .
- condensed matter physics: graphene, phosphorene, . . .

membranes made of molecules interacting by V (|ri − rj|)

=⇒ bending and elastic energy contributions
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Free energy of crystalline membranes

• Flat reference configuration: r0(x, y) = (x, y, z = 0)

• Fluctuations: r(x, y) = r0 + ux(x, y) e1 + uy(x, y) e2 + h(x, y) n̂

h ≡ height field and ui ≡ phonon fields

h(x,y)

u
u

y

z

x

x

y

r(x  )α
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Free energy:

F '
∫
d2x

[
κ

2
(∆h)2 + µ(uab)

2 +
λ

2
(uab)

2

]

uab ≡ stress tensor ∼ encodes fluctuations with respect to the
flat configuration r0

uab = 1
2 [∂aub + ∂bua + ∂au.∂bu + ∂ah ∂bh]

κ ≡ rigidity constant λ, µ ≡ elastic coupling constants

coupling between height and phonon fluctuations

=⇒ frustration of height fluctuations
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First approach of fluctuations

Gaussian approximation on phonon fields:

uab '
1

2
[∂aub + ∂bua + ∂ah ∂bh]

integrate over u:

Feff =
κ

2

∫
d2x (∆h)2 +

K
8

∫
d2x

(
P Tab ∂ah ∂bh

)2
P Tab = δab − ∂a∂b/∇2

κ = bending, rigidity modulus

K = 4µ(λ+ µ)/(2µ+ λ): Young elasticity modulus
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Self-consistent screening approximation (SCSA) ∼
Schwinger-Dyson equation in the large d limit (Nelson and Peliti 87)

κeff (q) = κ+ kBTK
∫
d2k

[
q̂a P

T
ab q̂b

]2
κeff (q + k)|q + k|4

=⇒ κeff (q→ 0) ∼
√
kBTK
q

i.e. effective rigidity increased by fluctuations !

fluctuations of normal vector n̂:

〈θ(x, y)2〉 = kBT

∫
d2q

1

κeff (q)q2
< ∞ !

=⇒ Long-range order between normals in D = 2 (and less) !
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no trouble with Mermin-Wagner Theorem

Feff can be rewritten as an interaction between Gaussian
curvatures:

Feff =
κ

2

∫
d2x (∆h)2 +K

∫
x,y

K(x)G(x− y)K(y)

K ≡ Gaussian curvature:

K(x) = −∆(∂ah ∂bh) + ∂a∂b(∂ah ∂bh)

with a non decreasing kernel:

G(x− y) ∝ |x− y|2 ln |x− y|

=⇒ evades Mermin-Wagner Theorem !
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polymerized membranes: possibility of spontaneous symmetry
breaking in D = 2 and even in D < 2

=⇒ low-temperature, ordered, flat, phase with non-trivial
correlations in the I.R.


Ghh(q) ∼ q−(4−η)

Guu(q) ∼ q−(6−D−2η)

with η 6= 0 =⇒ associated e.g. to stable sheet of graphene

a challenge: to compute η

which also provides the lower critical dimension:
Dlc(η) = 2− η
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Renormalization group approaches to polymerized
membranes

One-loop perturbative approach of the flat phase

(Aronovitz, Golubović and Lubensky 88; Guitter, David, Leibler, Peliti 89)

F '
∫
dDx

[
κ

2
(∆h)2 + µ(uab)

2 +
λ

2
(uaa)

2

]
=⇒ perturbative expansion in λ and µ

β-functions in D = 4− ε at one-loop order:

∂tµ = (−ε+ 2η)µ+
dcµ

2

96π2

∂tλ = (−ε+ 2η)λ+
dc(6λ

2 + 6λµ+ µ2)

96π2

with dc = d−D (nb of Goldstone modes) and η = 5µ(λ+ µ)/(2µ+ λ)
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3 unstable fixed points P1, P2 and P3

a non-trivial fixed point P4 that governs the flat phase and is
located on the submanifold 3λ+ µ = 0
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Physical properties

a nonvanishing value of η =
12ε

d−D + 24
with: η(ε = 2, d = 3) = 0.96

increased rigidity: κeff (L) ∼ Lη

decreased elasticity modulus: Keff (L) ∼ L−2+2η

=⇒ consequences of “ripples”
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Physical property

Poisson ratio : ν = −expansionT
expansionL

as the flow runs towards 3λ+ µ = 0: ν =
λ∗

3λ∗ + 2µ∗
= −1

3
in agreement with experiments

Everything seems to be fine . . . 25 / 48
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However:

flat phase properties (η and ν) poorly determined in D = 2 –
far from D = 4 – and d = 3

SCSA or weak-coupling expansion extremely tedious beyond
leading order due to :

multiplicity of fields: h, u and the coupling constants λ, µ
derivative nature/complexity of the interaction

=⇒ use of a non perturbative RG approach
(J.-P. Kownacki and D. Mouhanna 08)
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Non perturbative renormalization group

Wilson program: (K.G. Wilson, L.P. Kadanoff, J. B. Kogut . . . (70’s))

gradual integration over high momentum fluctuations

Z =

∫
Dζ e−H[ζ]

splitting: ζ(qqq) = ζ>(qqq) + ζ<(qqq)

with:

{
ζ>(qqq) = ζ(qqq) for k ≤ q ≤ Λ = a−1

ζ<(qqq) = ζ(qqq) for 0 ≤ q ≤ k

Z =

∫
Dζ< e−Hk[ζ<]

Wilson-Polchinski equation:

∂kHk[ζ<] =
1

2

∫
q
∂kC>(q).

(
δ2Hk

δζ<(q)δζ<(−q)
− δHk

δζ<(q)

δHk

δζ<(−q)

)
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formulation in terms of Hamiltonian not very efficient . . .

best formulation in terms of running effective action (or
running Gibbs free energy) Γk in which high-momentum
fluctuations – k ≤ q ≤ Λ – have been integrated out
(Wetterich (90’s))

Γk=Λ = H[ζ] ≡ microscopic scale

Γk = Γk[φ] ≡ running scale k

Γk=0 = Γ[φ] ≡ macroscopic scale
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Γk follows an exact equation (Wetterich (93)):

∂kΓk[φ] =
1

2

∫
ddqqq ∂kRk(qqq

2)
1

Γ
(2)
k [φ] +Rk(qqq2)

with Rk(qqq
2) ≡ cut-off function

one-loop structure close to that of perturbative field theory

∂kΓk[φ] = 1
2

but:

Rk(qqq
2) ∼

q→0
k2 =⇒ I.R. finiteness

Rk(qqq
2) →

q→∞
0 =⇒ U.V. finiteness

Γ
(2)
k [φ]ij ≡ full, i.e. field-dependent propagator !

=⇒ non perturbative in the coupling constants, d, D, etc !
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Effective action Γk[∂µr] for membranes:
(Kownacki and Mouhanna 08)

• ansatz for Γk [∂µr]: bending and elastic terms

Γk [∂µr] =

∫
dDx

κ

2
(∆r)2 + λ (∂ar.∂br)2 + µ (∂ar.∂ar)2

+ power-counting non renormalizable terms !

=⇒ compute Γ
(2)
k [∂µr]

=⇒ plug it into the Wetterich’s equation

=⇒ compute the (non perturbative) RG equations
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∂tλ = (D − 4 + 2ηt)λ+
256 d̃ λ2 ÃD

D(D + 2)(D + 4)(D + 8)

∂tµ = (D−4+2ηt)µ+
128 d̃ (λ2 + 2(D + 2)λµ+D(D + 2)µ2)ÃD

D(D + 2)(D + 4)(D + 8)

with the running anomalous dimension

ηt =
128(D + 4)(D2 − 1)λ(λ+ 2µ)AD

D2(D2 + 6D + 8)(λ+ µ) + 128(D2 − 1) λ(λ+ 2µ)AD

with ÃD = AD(8 +Dηt) and AD = 2−D−1π−D/2/Γ(D/2)

=⇒ non polynomial/non perturbative in λ and µ
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Results: (Kownacki and Mouhanna 08)

flow runs towards the hypersurface: (2 +D)λ+ 2µ = 0

=⇒ ν =
λ∗

(D − 1)λ∗ + 2µ∗
=−1

3
in any D !

η = 0.849 that compares very well to Monte Carlo

computation with an interatomic potential for graphene:
η = 0.850 ! (Los, Katsnelson, Yazyev, Zakharchenko and Fasolino 09)

At higher orders. . . ?
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no corrections at higher orders in (∂r)2p !
(Essafi, Kownacki and Mouhanna 14)

no quantitative corrections at all orders in ∂2p !
ν = −1/3 and η = 0.85
(Braghin and Hasselmann 10)

=⇒ extreme – unexpected – stability of this approach

also: high powers in fields and field-derivatives in Γk[∂µr] ⇐⇒
high orders of perturbation theory

Question: what is structure/properties of this theory at higher
orders in perturbation in λ and µ ?
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Polymerized membranes at two-loop order

Polymerized membranes at two-loop order

(Coquand, Mouhanna and Teber, to be published)

S[~u,~h] =
1

2

∫
dDx

[
κ(∆~h)2

+λ
(

(∂iui)
2 + ∂iui(∂j~h.∂j~h) + 1

4(∂j~h.∂i~h)2
)

+µ
(

(∂iui)
2 + ∂iuj∂juj + ∂iuj(∂i~h.∂j~h) + i↔ j + 1

2(∂j~h.∂i~h)2
)]

Properties

derivative field theory =⇒ momentum dependent vertices

theory ”living” in space-time: no internal degrees of freedom
hα with α = 1 . . . d−D and ui with i = 1 . . . D
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Feynman rules

height-field propagator:

Gαβh (q) =
δαβ

q4
=

α βq

Phonon-field propagator:

Giju (q) =
1

µq2
P ijT (q) +

1

(λ+ 2µ)q2
P ijL (q)

=
i jq

with P ijT (q) = δij −
qiqj
q2

and P ijL (q) =
qiqj
q2
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Feynman rules

3-points (momentum-dependent) vertex: hhu

V j
αβ(q) = − i

2

[
λ(q1.q2)qj + µ

(
(q.q1)qj2 + (q.q2)qj1

)]
δαβ

=
j

α

β

q
q1

q2
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Feynman rules
4-points (momentum-dependent) vertex: hhhh

Wαβγθ(q) =
q1+q2=q

1

24

{
λ
[
(q1.q2)(q3.q4)δαβδγθ

+ (q1.q3)(q2.q4)δαγδβθ

+ (q1.q4)(q2.q3)δαθδβγ

]
+ µ

[(
(q1.q3)(q2.q4) + (q1.q4)(q2.q3)

)
δαβδγθ

+
(
(q1.q4)(q2.q3) + (q1.q2)(q3.q4)

)
δαγδβθ

+
(
(q1.q2)(q3.q4) + (q1.q3)(q2.q4)

)
δαθδβγ

]}

=

α

β γ

θq1

q2

q3

q4 37 / 48
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Good news: it is sufficient to renormalize the propagators !

One-loop

[
Σh(p)

]
1−loop

=
α βk

+ / /

q

p− q

[
Σij
u (p)

]
1−loop

=
i jq

+
i j
/ /

q

p− q
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Two-loop

[
Σh(p)

]
2−loops

= / / + / / + / /

+ / / + / / + / /

+ / /

Involve integrals of the kind – and kite ! :

J2(D, ~p, α1, α2, α3, α4, α5) =

∫
dDk1dDk2

(~p− ~k1)2α1 (~p− ~k1 − ~k2)2α2 (~p− ~k2)2α3k2α4
1 k2α4

2
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[
Σij
u (p)

]
2−loops

=
/ /
i j

+
i j
/ /

+
/ /
i j

+
/ /
i j

+
i j
/ /
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Results

A non-trivial stable fixed point P4 that controls the flat phase
with:

λ∗ = −ε 32π2

dc + 24
+ ε2

32π2(19dc + 156)

5(dc + 20)3

µ∗ = ε
96π2

dc + 24
− ε2 32π2(47dc + 228)

5(dc + 24)3

but the flow is no longer goes towards the submanifold
3λ+ µ = 0 !

Physical properties

Poisson ratio:
one-loop: ν = −1

3 = −0.3333 and two-loop: ν = −0.2460 !

anomalous dimension in D = 2 (i.e. ε = 2 . . . ) and d = 3:
one-loop: η = 0.96 and two-loop: η = 0.9139 to be compared
to η = 0.85
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Conclusion

Satisfying qualitative and quantitative description of
polymerized membranes by means of non perturbative RG
and stability with respect to higher orders

One exhibits a conflict with perturbation theory
=⇒ strong dependence with respect to the order

Observed in other situations:
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Anisotropic membranes =⇒ tubular phase

anisotropy between the x and y directions

Γk[r] =

∫
dD−1x dy

{Zy
2

(∂2
yr)2 + tx(∂xr)2 +

uy
2

(∂yr.∂yr)2
}

transition between a crumpled phase with ζy = 0 at high T
and a tubular phase with ζy 6= 0 at low T
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Upper critical dimension: D = 5/2 close to D = 2

=⇒ ε = 5/2−D expansion in good position ?

• perturbatively: η = −0.0015 < 0 ! (rigidity: κ ∼ 1/qη)
ε-expansion: “unreliable” and “qualitatively wrong”

(Radzihovsky and Toner 95)

• non perturbatively:
(Essafi, Kownacki and Mouhanna 11)

η = 0.358(4) > 0 in agreement with MC data . . .
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Disordered membranes
(Coquand, Kownacki, Essafi and Mouhanna 18)

disorder exists: imperfect polymerization, vacancies, proteins,

=⇒ elastic (a) and curvature (b) disorder
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Hamiltonian: c(x) and m(x) Gaussian random fields

H[r] =

∫
dDx

{
κ

2

(
∂µ∂µr(x)− c(x)

)2
+λ
(
∂µr(x).∂νr(x)− δµν m(x)

)2
+µ
(
∂µr(x).∂µ.r(x)−Dm(x)

)2}

=⇒ modelize curvature and elasticity disorder

quenched disorder =⇒ average over disorder of F = logZ
using replica trick:

logZ = lim
n→0

Zn − 1

n
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=⇒ effective action with interacting replica :

Γ[r] =

∫
ddx

∑
α

{κ
2

(
∂i∂ir

α(x)
)2

+
λ

8

(
∂ir

α(x).∂ir
α(x)

)2
+
µ

4

(
∂ir

α(x).∂jr
α(x)

)2}
−∆κ

2

∑
α,β

∂i∂ir
α(x).∂j∂jr

β(x)

−∆λ

8

∑
α,β

(
∂ir

α(x).∂ir
α(x)

)(
∂jr

β(x).∂jr
β(x)

)
−∆µ

8

∑
α,β

(
∂ir

α(x).∂jr
α(x)

)(
∂ir

β(x).∂jr
β(x)

)
with ∆κ,∆λ,∆µ disorder variances
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non perturbative RG approach : stable fixed point
(Coquand, Essafi, Kownacki, Mouhanna 18):

not seen within perturbation theory

at one-loop order (Morse and Lubensky 92)

at two-loop order . . . (Coquand, Mouhanna and Teber, to be

published)

there is a clear need for a clarification of the link between
perturbative and non perturbative approaches

require studies of high orders of perturbation theory

48 / 48


	Introduction
	Fluid membranes vs polymerized membranes
	Renormalization group approaches to polymerized membranes
	Conclusion

