Elliptic polylogarithms
and Feynman integrals

Brenda Penante

In collaboration with
+-Broedel C. Duhr F-Dulat L Tancrech

Workshop on Multi-loop Calculations:

Methods and Applications

CE/RW LAPTH - Sorbonne Université
= May 14th, 2019







DIFFERENTIATION

TRY APPLYING

CHAIN POWER
RULE RULE

PRODUCT
CRUE T RUE

CAUCHY'S
,
"'@
\ NTEGRATON
mmmmo\

INTEGRF\TION

TRY APPLYlNG
RATION

"!
NOPE!
&b

-\‘%3

THEDREM

WJHAT THE HECK IS A

BESSEL FUNCTION??

PHONE CALLS To
MATHEMATICIANS

‘@ BURN THE
EVIDENCE

[

3

\

[xked.com/2117]






Feynman Integrals

L-loop integral in D dimensions:

Mandelstam variables tensor numerator

= =

Ml ‘Hn {S@J} {mQ} /H@D Dl/1lu1 Ml?;;p

propagators

(ki = m;)




Feynman Integrals

L-loop integral in D dimensions:

Mandelstam variables tensor numerator
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propagators
(kF = m7)

Standard QFT material, just integrate it.



Integrating Feynman integrals requires a lot of creativity:

¢ UV/IR divergences — dimensional regularisation: D =D, . —2¢
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e Feynman parameters —
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* Integration-by-parts identities among integrals
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* Independent integrals are called master integrals

» Differential equations for master integrals (also in canonical form)

— Kotikov ‘91 / Remiddi ‘97 / Gehrmann, Remiddi ‘99 / Henn ‘13 —

dF = edA F —»  Solution in terms of iterated integrals

\ Matrix of differential forms



It helps it you understand properties ot the result:

* They evaluate to “special functions” which contain physical
information in their analytic structure

Tree level: Loop level:

\ / m
m
Pole at: Threshold starting at:
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— discontinuity



 The branch cut structure of loop integrals becomes ever more
intricate with more legs, loops, scales

e Useful to study general functions that result from Fls

e Multivalued functions: log(e*™z) = log(z) + 2mi

* Most well studied case: Multiple Polylogarithms (MPLs)

(all 1-loop examples and most 2-loop examples without internal masses)

In this talk we want to go beyond MPLs, but first let's
understand what properties we would like to generalise



Multiple Polylogarithms (MPLs)
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MPLs are iterated integrals of rational functions 1

— integration kernels:

defined on a Riemann sphere with punctures ——a



MPLs: Weight = Length = number of integrations
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Lots of nice properties:

n
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Length n ——» n -fold tensor product

In depth understanding of these functions was
key to obtaining analytic results for Feynman integrals
or even complete amplitudes

* Taming analytical expressions, functional identities
e  Symbol bootstrap with MPL ansatz in N=4 SYM

— Caron-Huot, Dixon, Drummond, Duhr, Harrington, Henn,
MclLeod, Papathanaseou, Pennington, Spradlin, von Hippel —



MPLs are pure



What do you mean “Pure”?

e Definition based on total differential — Hepn 93 —

/' # of integrations

A pure function of weight n is a function whose
total derivative can be expressed in terms of pure

functions of weight n-1 (times algebraic one-forms)
algebraic
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What do you mean “Pure”?

— Arkani-Hamed, Bourjaily

Definition based on residues Cachions Trikarto

An integral is pure if all of its non-vanishing
residues are the same up to a sign

“Integrals with unit leading singularity”

Ex: massless box
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What do you mean “Pure”?

— Arkani-Hamed, Bourjaily

e Definition based on residues Cackase Tkt

An integral is pure if all of its non-vanishing
residues are the same up to a sign

“Integrals with unit leading singularity”

Pure Feynman Integrals, when properly normalisea:
* Are expressible in terms of pure functions

* Satisty a ditferential equation system in canonical form



Pure integrals evaluate to pure functions

Differential equations in canonical form — Henn "13 —

Matrix of “dlog” forms

dF = edA F

/L

Vector of master integrals

For MPLs:
Natural solution in terms of I = Pexp {6/ dA} Fo
<

pure functions G as an expansion in €



Pure integrals evaluate to pure functions

Differential equations in canonical form — Henn "13 —

Matrix of “dlog” forms

dF = edA F

/L

Vector of master integrals

EorNIEES
Natural solution in terms of e {6/ dA} Il
Y

pure functions G as an expansion in €

What to do when the integral cannot
be evaluated in terms of MPLs?



How do we know an integral can be evaluated
in terms of MPLs?

dt

t—CLl

o

G =0 :/
0

At every integration step, the integrand can be written as
an MPL times a rational function as above by using
partial fractioning / change of variables

Concept of “linear reducibility” — Brown ‘08 / Panzer ‘15 —

This approach can be taken in a large variety of cases,
but unfortunately not always



Ex: 2-loop massive sunrise in d=2 —

e
-

Two of the master integrals satisty a coupled system of DE,
First master integral satisfies a 2nd order DE:

&2 d .
D <da2’ da) S111 = R(a) e

Homogeneous solution:

Sqgrt of quartic polynomial

1
at — be rationalised —
K(\ :/ / cannot be rationalise
) o /(1 =121 =X

(complete elliptic integral of the 1st kind)




By now we know lots of examples that don't fit into the MPL
framework:

m b1 b1
/—\ kl kl
1
s and many more...
U k2 l{?g
m P2 P2

Goal: Develop a class of functions which is applicable in general
for Feynman integrals of the elliptic kind (next-to-simplest):

OUTLINE

* Elliptic generalisations of MPLs to functions on the elliptic
curve w/ log singularities suitable for FI computations

* Generalise as many properties of MPLs to the elliptic case, in
particular purity / uniform weight



Detine pure elliptic MPLs (eMPLs)

* We seek to generalise the following to the elliptic case:

A function is called pure if it is unipotent and its
total differential involves only pure functions and
one-forms with at most logarithmic singularities.

(Unipotent: total diff has no homogeneous term)

Log singularities
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Elliptic Polylogarithms on the torus

— Brown, Levin ‘11, Broedel, Mafra, Matthes, Schlotterer ‘14 —

torus: (C/A
Modular group: SL(2, Z)
A = Zwq + Zws
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Elliptic Polylogarithms on the torus

— Brown, Levin ‘11, Broedel, Mafra, Matthes, Schlotterer ‘14 —
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Kernels defined through generating function:
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—

Odd Jacobi theta function

n>0

Kernels have at most simple poles at lattice points

I’ form a basis for all eMPLs



Elliptic Polylogarithms on the torus

— Brown, Levin ‘11, Broedel, Mafra, Matthes, Schlotterer ‘14 —
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Kernels defined through generating function:
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Odd Jacobi theta function

Weierstrass zeta function
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Like MPLs, T satisfy nice properties

Total ditterential without homogeneous term (= unipotent)
— Broedel, Duhr, Dulat, Penante, Tancredi, 2018 —
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important: g™ (2,7) have at most simple poles for z =m +nr, m,n € Z



Like MPLs, T satisfy nice properties

Total differential without homogeneous term (= unipotent)
— Broedel, Duhr, Dulat, Penante, Tancredi, 2018 —
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A function is called pure if it is unipotent and
it has at most logarithmic singularities.

I' are pure!




So, we can use as guiding principle

An elliptic Feynman integral is pure it it is pure
when expressed in terms of 1

Linear combination of 1" with coefficients
being rational numbers

~

d( f(z, T)f( o) =tdf T))f( a2 alidEr ot

Homogeneous



So, we can use as guiding principle

An elliptic Feynman integral is pure it it is pure
when expressed in terms of 1

Linear combination of 1" with coefficients
being rational numbers

~

d( f(z, T)f( o) =tdf T))f( a2 alidEr ot

Homogeneous

Why bother detining another version of eMPLs?




Back to the sunrise, the maximal cut
didn’t look very much like ¢\ (z,7) ...




“lliptic curves
=z —ale—as){z—az (&t —ar = Pilr)
Vector of branch points of ¥ : a= (a1,as,as,0a4)

Periods:

2 =
w1:204/ 5221{()\) w2:2c4/ 522731((1—)\)

We want: iterated integral of rational functions of x and y
where y° = Py(z).



Elliptic Curves and Torii
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To summarise:

We define a basis of eMPLs on the elliptic curve such that
1. They form a basis for all eMPLs

2. They are pure

3. They have definite parity (z,9) = (z,—y) €2 2z = —2

4. They manitestly contain ordinary MPLs



Meet the pure eMPLs on the elliptic curve:

o
e 0 / e e el
0
n; € 4
B {50 abel

¢c; € C indicate punctures (for |n;| = 1)

Infinitely many kernels, ¥, butonly |p| < 2
typically appear in explicit problems

1
Ex:  Wo(0,2,d) = —— Uy(c,z,a) =
W1y L=




Meet the pure eMPLs on the elliptic curve:

o
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dx Uy, (c,x,d) = dz; [g(n)(za: S e T g(n)(zx 26T

= (9(1)(2’:1: =T F 9(1)(%: + 2 T))}

Recall: ¢'¥(z,7) are the kernels of the eMPLs T



Meet the pure eMPLs on the elliptic curve:
Ea( ey i cp 3 %,0) = / dt Un, (c1,t, @) Ea4(c; 2 off 51, @)
0
n, € Z

dx Uy, (c,x,d) = dz; [Q(n)(zx S e T g(n)(zw 26T

= (9(1)(% =2 T F 9(1)(2’:1: + 2 T))}

1. They form a basis for all eMPLs /

(one-to-one correspondence with basis of T')



Meet the pure eMPLs on the elliptic curve:
Ea( ey i cp 3 %,0) = / dt Un, (c1,t, @) Ea4(c; 2 off 51, @)
0
n, € Z

dx Uy, (c,x,d) = dz; [Q(n)(zx S e T g(n)(zw 26T

=0n 1 (9(1)(%: =2 T F Q(D(Zaz + 2 T))}

2. They are pure /
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(Linear combination of I' with numeric coefficients)



Meet the pure eMPLs on the elliptic curve:

e

dx U
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hey have definite parity/

(Recall ¢ (=z,7)=(=1)"¢"(z, 7))



Meet the pure eMPLs on the elliptic curve:

o
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0
n; € 4

dx Uy, (c,x,d) = dz; [g(n)(za: S e T g(n)(zw 26T

They manifestly contain ordinary MPLs



Recall from ordinary polylogs:

Weight Length
VT =) 1 0
Gk — k 0
e - —_ k k



Recall from ordinary polylogs:

Weight Length
VT =) 1 0
Gk — k 0
= — k k

Empirically, by requiring relations between uniform weight functions, we postulate:

Wi, W2 1 O
= 0 1
W1

B e

&

D i M k

L

We'll see in applications that using these definitions, results are of uniform weight



How to use this framework — step by step

Start from Feynman parametric integral

Do as many integrals as possible in terms of MPLs G

dt
t—a1

e 0 :/
0

e 0 0

1
: d
Reach a representation of the type I = / 5 x (bunch of Gs)
0

Rewrite (bunch of Gs) as U,(...,z,a)&(...;z,qa)

Integrate in terms of eMPLs

5
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0
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Two master integrals: M1 = 1111110, M2 = 1511,1,1,1,0



First master M; = Liii1110

After doing all but one integration following the given steps:

v = 28 [ dE
S=Jg. =Y
X 6<G((x2 — 1) Z9; a) (G_ (_j 2 1;3—32) + 2G_ (532;572))
S
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+ 6G (0, (1 — Z2) Ta;a) + 6G (0, (To — 1) To;a) — 6log(a)G ((1 — Z2) To;a) + 7r2>



First master M; = 1111110

After doing all but one integration following the given steps:

Bt

— G_ (Z2) <6G (0;22) G ((1 — Z2) Zo;0) + 6G (1;22) G ((1 = Z3) Z2; a)

)

+ 6G (0, (1 — Z2) Ta;a) + 6G (0, (Ta — 1) To;a) — 6log(a)G ((1 — Z2) To;a) + 7r2>




First master M7 = 1111110

e i) o) o) )

After doing all but one integration following the given steps:

L E y* = Pa(@2) = B2(32 — (@~ b)(@ —b-)  Elliptic

I




First master My =0
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First master My =0
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=t = 011 0—T1 1 =111
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a=m?/(—¢%) . Manifestly pure of weight 4!



It we carry on:

< » P1 » D1
kl kl
\: \
< > D2 > P2
— Tancredi, von Manteuffel ‘17 — — Aglietti, Bonciani ‘07 —

2 master integrals 3 master integrals

In both cases, possible to change basis to a basis of uniform weight!

Unclear a priori
Can it be done in general?

What benefits can this bring?



Conclusions

* Pure elliptic polylogarithms seem to capture interesting structure of certain
Feynman integrals

* General class of functions which deserves to be studied in depth if we seek
manageable analytical expressions

e Efficient numerical evaluation to the same level of MPLs one day?
[Weinzierl’s talk]

e Not enough for integrals with more complicated geometry (K3 surfaces,
CYs, multiple elliptic curves)

* Hopeftully this formalism is useful outside of the realm of Feynman
integrals too — curious to see room for potential applications in this
workshop!



Back-up: Explicit eMPLs integration kernels

sl0z.d) = ——
w1y
Ui(e,,8) = — !
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Requirement of simple poles at most introduces new building block:

Double pole at £ = o0
= / dz’ B4(z)

<, %

Simple pole atz = o0



