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properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.
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GR has been extraordinarily  fruitful in correctly  predicting new physics, including the 

gravitational bending of light (or gravitational lensing), the gravitational redshift, black holes and 

gravitational waves.  GR also provided the overall framework for modern cosmology, including 

the expansion of the Universe. Even if GR is fully  correct (on lengthscales of astrophysical 

interest),  LISA may reveal more new physics from strong-field GR.  The famous singularity 

theorems of Penrose and Hawking assert that sufficiently  compact objects must collapse, 

resulting in some spacetime singularity, but it is only  a conjecture that the singularity is 

generically clothed by a black hole’s event horizon.  Might LISA reveal naked singularities or 

some other object formed of strongly warped spacetime?  Could some central objects in galactic 

nuclei represent some other form of matter, such as massive boson or soliton stars?   Since our 

understanding today of the nonlinear, strong gravity  regime of GR is quite limited, LISA’s “tests 

of GR” could reveal new objects that are unexpected, but perfectly consistent with GR.  

The inspiral, merger, and ringdown of MBH binaries

LISA’s strongest sources are 

expected to be coalescing MBH 

binaries where the components 

have roughly comparable masses, 

0.1 . M2/M1 < 1  .  T h e 

coalescence waveforms will be 

visible by  eye in the data stream, 

standing up well above the noise, 

as illustrated in Figure 4-1.

As depicted in Figure 4-2, the 

coalescence can be described in 

three stages: inspiral, merger, and 

ringdown (Flanagan & Hughes 

1998), all of which will typically 

be observable by  LISA. The 

inspiral stage is a relatively slow, 

adiabatic process in which the BHs 

spiral together on quasi-circular 

orbits.  The BHs have wide enough 

separations that they can be treated as 

point particles within the PN 

approximation; consequently, this 

stage can be computed analytically, 

with high-order PN expansions. The 

inspiral is followed by the dynamical 
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Figure 4-1  Gravitational wave signal for the final few  orbits, 

plunge, merger and ringdown of an MBH-MBH binary.  Here 

both MBHs have mass 105M� and are not spinning, the binary 

is at z=15, and is seen face-on. The signal is the sum of the 

gravitational waveform and simulated LISA noise.  Note that 

even at  z=15, the waveform stands up well above the noise 

and is visible in fine detail. The inset shows a longer stretch 

of data, containing the merger waveform.  The large-

amplitude, low-frequency “wiggles” are due to LISA’s accel-

eration noise, which rises at lower frequencies. 
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• A triumph of modern physics: 
➡A 6 parameter “standard” model (Ωcdm, Ωb, ns, τ, As, ΩDE) based on cosmological 

perturbation theory fits multiple data-sets across cosmic times.
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6PN+: LISA, ET

5PN: biased parameter 
estimates, tidal effects
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New Result in Relativity
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where for convenience, the expressions for c1 and c2 in
Ref. [20] are reproduced here with slightly di↵erent nor-
malization and in our current notation. As emphasized
in Ref. [20], the cancellation of IR divergences between

M
(EFT)
3PM and M3PM depends critically on c1 and c2 and

thus provides a nontrivial check of our calculation.

Consistency checks. Our results pass several highly non-
trivial consistency checks (see Ref. [23] for more details).
First and foremost, we have verified that the 4PN terms
in our Hamiltonian are physically equivalent to known
results up to a canonical coordinate transformation,

(r,p) ! (R,P ) = (A r +B p, C p+D r)

A = 1� Gm⌫

2|r| + · · · , B =
G(1� 2/⌫)

4m|r| p · r + · · · ,

C = 1 +
Gm⌫

2|r| + · · · , D = �Gm⌫

2|r|3 p · r + · · · ,
(12)

with ellipses denoting higher order corrections entering
as a power series in G/|r|, p2, and (p · r)2/r2 (for past
treatments, see Ref. [35, 36]). To derive this coordinate
transformation we generate an ansatz for A,B,C,D and
constrain it to preserve the Poisson brackets, {r,p} =
{R,P } = 1 and other vanishing ones , in the spirit of
Ref. [37]. We verify that within this space of canonical
transformations exists a subspace which maps our Hamil-
tonian in Eq. (11) to the one in the literature, e.g. as sum-
marized in Eq.(8.41) of Ref. [9], up to the intersection of
3PM and 4PN accuracy.

Second, applying the methods of Ref. [20] we have
checked that the full-theory amplitude M3PM in Eq. (8)

is identical to the amplitude M
(EFT)
3PM computed from the

conservative Hamiltonian in Ref. [9] up to 4PN accuracy.
Third, we have extracted from our Hamiltonian the

coordinate invariant energy of a circular orbit as a func-
tion of the period. Working at 2PN order—the highest
order subsumed by 3PM which is relevant to a virialized
system—we agree with known results [8].

Fourth, we have extracted from our Hamiltonian the
3PM-accurate scattering angle for an unbound orbit in
center of mass frame:

� = �m�⇠fM1

2⇡L|p| � m�⇠fM2

2⇡L2
+

2m�⇠|p|fM3

⇡L3

� m2�2⇠2fM1
fM2

2⇡3L3|p| +
m3�3⇠3fM3

1

96⇡3L3|p|3 , (13)

where the angular momentum L = b|p|, b is the im-

pact parameter and the fMi are the IR finite pieces of
the PM amplitudes with their q dependence removed:
fM1 = q2M

0

1PM, fM2 = |q|M 0

2PM, fM3 = M
0

3PM/ log q2.
Here the prime denotes that these are the IR finite pieces
defined in our subtraction, e.g. for 3PM this is given by
the log q2 term in Eq. (8); for 1PM and 2PM see Ref. [20].
Truncated to 4PN order, this expression is in agreement
with known results [38].
Last but not least, in the probe limit m1 ⌧ m2, our

result exactly coincides with the Hamiltonian for a point
particle in a Schwarzschild background to O(G3) and all
orders in velocity, e.g. as given in Eq.(8) of Ref. [39].

Conclusions. We have presented the first computation
of the 3PM amplitude for classical scattering of gravita-
tionally interacting massive spinless particles. From this
amplitude we have extracted the corresponding conser-
vative Hamiltonian for binary dynamics at 3PM order.
Our results leave many avenues for future work, e.g. ex-

tending to higher orders in the PM expansion, incorpo-
rating important phenomena like spin, radiation, finite-
size e↵ects, and connecting our results to the e↵ective
one-body formalism [3, 11, 34, 40].
The remarkable simplicity of the 3PM amplitude in

Eq. (8) and potential in Eq. (11) bodes well for future
progress. Moreover, since the amplitude and EFT meth-
ods employed in this paper are far from exhausted, we
believe that the progress we have reported marks only
the beginning.

[1] B. P. Abbott et al. [LIGO Scientific and Virgo Collab-
orations], “Observation of gravitational waves from a

binary black hole merger,” Phys. Rev. Lett. 116, no.
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m = m1 +m2 , ⌫ =
m1m2

m2
, E = E1 + E2 , ⇠ =

E1E2

E2
, � =

E

m
, � =

p1 · p2
m1m2
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Here we use center of mass coordinates where the incom-
ing and outgoing particle momenta are ±p and ±(p�q),
respectively, and have included the nonrelativistic nor-

malization factor, 1/4E1E2, where E1,2 =
q

p2 +m2
1,2.

We also define the total mass m = m1 + m2, the
symmetric mass ratio ⌫ = m1m2/m

2, the total energy
E = E1 +E2, the symmetric energy ratio ⇠ = E1E2/E

2,
the energy-mass ratio � = E/m, and the relativistic
kinematic invariant � = p1·p2

m1m2
. Note that the sinh�1

factor is proportional to the sum of particle rapidities,
tanh�1 |p|/E1,2.

Eq. (8) only includes q-dependent terms which persist
in the classical limit. In particular, the log q2 term ulti-
mately feeds into the conservative Hamiltonian through
the Fourier transform

⇥
log q2

⇤
FT

= � 1
2⇡|r|3 , while the re-

maining IR divergent piece cancels in the EFT matching.
For completeness, we present expressions for the latter in
dimensional regularization, keeping only the classically

relevant terms in the small-|q| expansion,

F1 =

Z
d3�2✏k
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e(�E�log 4⇡)

X2
1Y1X2
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� log(16q2)
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� 2
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log q2 + 2 log2 q2 � ⇡2

6

�

+
i

64⇡|q||p|3 � 1

256⇡2p4
log q2, (9)

dropping terms at O(|q|0) or higher and expressing the
integrands in the notation of Ref. [20]. While the O(✏)
contributions to the coe�cients of these integrals are
needed to obtain the full amplitude in dimensional reg-
ularization, our integrand-level IR subtraction bypasses
this issue.
The Hamiltonian is extracted from the amplitude us-

ing the EFT method developed in Refs. [20, 21, 33] (see
Ref. [34] for another approach). In particular, consider
massive spinless particles interacting via the center of
mass Hamiltonian

H(p, r) =
q
p2 +m2

1 +
q

p2 +m2
2 + V (p, r),

V (p, r) =
1X

i=1

ci(p
2)

✓
G

|r|
◆i

,
(10)

where r is the distance vector between particles and i
runs over the PM expansion. Note that the form of
the above Hamiltonian implicitly fixes a gauge in which
terms involving p · r or time derivatives of p are absent.
We then compute the scattering amplitude of massive

scalars, M (EFT) =
P1

i=1 M
(EFT)
iPM , where M (EFT)

3PM receives
contributions from diagrams with two or fewer loops de-
pending on c1, c2, and c3. In Ref. [20], the coe�cients c1
and c2 were extracted analytically to all orders in veloc-

ity. Inserting these into M
(EFT)
3PM e↵ectively implements

the subtraction of iterated contributions. By equating

M
(EFT)
3PM = M3PM, we solve for the 3PM coe�cient c3.
The main result of the present work is the 3PM poten-

tial, encapsulated by the coe�cients

3PM
3X

i=1

ci(p
2)

✓
G

|r|

◆i
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mass coordinates where the incoming and outgoing par-
ticle momenta are ±p and ±(p − q), respectively. We
emphasize that M3 includes the nonrelativistic normal-

ization factor, 1/4E1E2, where E1,2 =
√

p2 +m2
1,2. We

also define the total mass m = m1 +m2, the symmetric
mass ratio ν = m1m2/m2, the total energy E = E1+E2,
the symmetric energy ratio ξ = E1E2/E2, the energy-
mass ratio γ = E/m, and the relativistic kinematic in-
variant σ = p1·p2

m1m2
. We emphasize that Eq. (8) is not

valid for m1,2 → 0 since quantum terms of order |q|/m1,2

are dropped, as will be elaborated on in Ref. [25]. Also,
note that the arcsinh factor is proportional to the sum of
particle rapidities, arctanh |p|/E1,2.

Eq. (8) only includes q-dependent terms which persist
in the classical limit. The log q2 term ultimately feeds
into the conservative Hamiltonian through the Fourier
transform

[
log q2

]
FT

= − 1
2π|r|3 . The IR-divergent con-

tributions, parameterized by F1 =
∫
k1

1
X2

1
Y1X2

and F2 =
∫
k1,k2

1
X2

1
Y1X

2
2
Y2X

2
3

in the notation described in Eq.(12)

of Ref. [22], will cancel in the EFT matching.
The Hamiltonian is extracted from the amplitude via

EFT methods developed in Refs. [22, 23, 35] (see Ref. [13]
for another approach). Consider massive spinless parti-
cles interacting via the center-of-mass Hamiltonian

H(p, r) =
√

p2 +m2
1 +

√
p2 +m2

2 + V (p, r),

V (p, r) =
∞∑

i=1

ci(p
2)

(
G

|r|

)i

,
(9)

where r is the distance vector between particles and i la-
bels PM orders. The above Hamiltonian is in a gauge in
which terms involving p·r or time derivatives of p are ab-
sent. We then compute the scattering amplitude of mas-

sive scalars, M(EFT) =
∑∞

i=1 M
(EFT)
i , where M(EFT)

3
comes from diagrams with two or fewer loops that de-
pend on c1, c2, and c3. In Ref. [22], the coefficients c1
and c2 were extracted analytically to all orders in veloc-

ity. Inserting these into M(EFT)
3 effectively implements

the subtraction of iterated contributions. By equating

M(EFT)
3 = M3, we solve for the 3PM coefficient c3.
The main result of the present work is the 3PM poten-

tial, encapsulated in the coefficients

c1 =
ν2m2

γ2ξ

(
1− 2σ2

)
, c2 =

ν2m3

γ2ξ

[
3

4

(
1− 5σ2

)
−

4νσ
(
1− 2σ2

)

γξ
−

ν2(1− ξ)
(
1− 2σ2

)2

2γ3ξ2

]

,

c3 =
ν2m4

γ2ξ

[
1

12

(
3− 6ν + 206νσ − 54σ2 + 108νσ2 + 4νσ3

)
−

4ν
(
3 + 12σ2 − 4σ4

)
arcsinh

√
σ−1
2√

σ2 − 1

−
3νγ

(
1− 2σ2

) (
1− 5σ2

)

2(1 + γ)(1 + σ)
−

3νσ
(
7− 20σ2

)

2γξ
−

ν2
(
3 + 8γ − 3ξ − 15σ2 − 80γσ2 + 15ξσ2

) (
1− 2σ2

)

4γ3ξ2

+
2ν3(3− 4ξ)σ

(
1− 2σ2

)2

γ4ξ3
+

ν4(1− 2ξ)
(
1− 2σ2

)3

2γ6ξ4

]

,

(10)

where for convenience, the expressions for c1 and c2 in
Ref. [22] are reproduced here with slightly different nor-
malization and in our current notation. As emphasized
in Ref. [22], the cancellation of IR divergences between

M(EFT)
3 and M3 depends critically on c1 and c2 and thus

provides a nontrivial check of our calculation.
Consistency checks. Our results pass several nontrivial
albeit overlapping consistency checks (see Ref. [25] for
details). First and foremost, we have verified that the
4PN terms in our Hamiltonian are equivalent to known
results up to a canonical coordinate transformation,

(r,p) → (R,P ) = (A r +B p, C p+D r)

A = 1− Gmν

2|r| + · · · , B =
G(1− 2/ν)

4m|r| p · r + · · · ,

C = 1 +
Gmν

2|r| + · · · , D = −Gmν

2|r|3 p · r + · · · ,

(11)

with ellipses denoting higher order corrections entering
as a power series in G/|r|, p2, and (p · r)2/r2 (for past
treatments, see Ref. [36, 37]). To derive this coordinate
transformation we generate an ansatz for A,B,C,D and
constrain it to preserve the Poisson brackets, i.e. {r,p} =
{R,P } = 1 with all other brackets vanishing, in the
spirit of Ref. [38]. We verify that within this space of
canonical transformations exists a subspace which maps
our Hamiltonian in Eq. (10) to the one in the literature,
e.g. as summarized in Eq.(8.41) of Ref. [10], up to the
intersection of 3PM and 4PN accuracy.

Second, applying the methods of Ref. [22] we have
checked that the full-theory amplitude M3 in Eq. (8)

is identical to the amplitude M(EFT)
3 computed from the

conservative Hamiltonian in Ref. [10] up to 4PN accu-
racy.

Third, we have extracted from our Hamiltonian the
coordinate invariant energy of a circular orbit as a func-

Bern, Cheung, Roiban, Shen, Solon, Zeng 2019
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FIG. 2. Energetics of PM Hamiltonians. We compare to NR the binding energy as a function of orbital frequency GM⌦
from both PM and PM-EOB Hamiltonians for a nonspinning binary black hole with mass ratio q = 1 (left panel) and q = 10
(right panel). The dots at the end of the curves mark the ISCOs, when present in the corresponding two-body dynamics. The
NR binding energy and its error are in cyan. The top x-axis shows the number of orbits until merger. In the lower panel we
show the fractional di↵erence between the approximants and the NR result.

q = 1 and 10 [24]. In Fig. 1 we display the NR waveforms.
Those simulations span about 56 and 36 GW cycles (cor-
responding to ⇠ 28 and ⇠ 18 orbital cycles), for q = 1
and q = 10, respectively, before merger. We highlight in
Fig. 1 the portion of the waveform that we use to com-
pare with the binding-energy approximants. As can be
seen, the comparisons with NR extend up to about 1.4
and 1.8 GW cycles, for q = 1 and q = 10, respectively,
before the two black holes merge. Thus, our comparisons
of analytic models to NR predictions extend to the late
inspiral of a binary evolution, a stage characterized by
high velocity and strong gravity.

We compare NR predictions against analytic results
obtained with PM, EOB and PN Hamiltonians, summa-
rized in Table I. Notably, we compute results with the
Hamiltonian at mPM orders with m = 1, 2, 3 [64, 81]
(labeled HmPM), and with the EOB Hamiltonian of
Refs. [53, 56] and this paper at mPM orders with m =
1, 2, 3 (labeled HEOB,PS

mPM ). We also compare results with
the PM EOB Hamiltonian augmented with PN results
up to 4PN order (labeled HEOB,PS

mPM+nPN), as derived in Ap-
pendix A. Furthermore, the (original) EOB Hamiltonian
employed in LIGO/Virgo data analysis [25, 27] is built
from the EOB Hamiltonian of Refs. [18, 66, 67], and it
resums perturbative PN results di↵erently from the PM

EOB Hamiltonian. To understand the impact of the dif-
ferent resummation, and also highlight the accuracy that
PM results would need to achieve in order to motivate
their use in waveform modeling, we also show results
with such an EOB Hamiltonian (labeled HEOB

nPN ). Fi-
nally, we also employ the PN Hamiltonian from Ref. [84]
(labeled HnPN), and an alternative 3PM EOB Hamilto-
nian presented for circular orbits in Appendix B (labeled

HEOB,fPS
3PM ).

In Figs. 2 and 3 we compare the binding energy com-
puted in NR with the ones from PM and PM EOB
Hamiltonians versus either the binary’s orbital frequency
(Fig. 2) or angular momentum (Fig. 3), for mass ratios
q = 1 and q = 10. We clearly see the improvement of
the PM binding energy from 1PM to 3PM, especially at
low frequency. The PM-EOB binding energies generally
show better agreement with NR, but they have a much
smaller range of variation from 1PM to 3PM. The 3PM
result does slightly better than 1PM, while 2PM is worse
than the other two. Overall those results demonstrate
the value and relevance of pushing PM calculations at
higher order, and of further exploring how to use PM
results to improve EOB models.

To understand the impact of PM calculations for
LIGO/Virgo analyses, it is important to compare the
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q = 1 and 10 [24]. In Fig. 1 we display the NR waveforms.
Those simulations span about 56 and 36 GW cycles (cor-
responding to ⇠ 28 and ⇠ 18 orbital cycles), for q = 1
and q = 10, respectively, before merger. We highlight in
Fig. 1 the portion of the waveform that we use to com-
pare with the binding-energy approximants. As can be
seen, the comparisons with NR extend up to about 1.4
and 1.8 GW cycles, for q = 1 and q = 10, respectively,
before the two black holes merge. Thus, our comparisons
of analytic models to NR predictions extend to the late
inspiral of a binary evolution, a stage characterized by
high velocity and strong gravity.

We compare NR predictions against analytic results
obtained with PM, EOB and PN Hamiltonians, summa-
rized in Table I. Notably, we compute results with the
Hamiltonian at mPM orders with m = 1, 2, 3 [64, 81]
(labeled HmPM), and with the EOB Hamiltonian of
Refs. [53, 56] and this paper at mPM orders with m =
1, 2, 3 (labeled HEOB,PS

mPM ). We also compare results with
the PM EOB Hamiltonian augmented with PN results
up to 4PN order (labeled HEOB,PS

mPM+nPN), as derived in Ap-
pendix A. Furthermore, the (original) EOB Hamiltonian
employed in LIGO/Virgo data analysis [25, 27] is built
from the EOB Hamiltonian of Refs. [18, 66, 67], and it
resums perturbative PN results di↵erently from the PM

EOB Hamiltonian. To understand the impact of the dif-
ferent resummation, and also highlight the accuracy that
PM results would need to achieve in order to motivate
their use in waveform modeling, we also show results
with such an EOB Hamiltonian (labeled HEOB

nPN ). Fi-
nally, we also employ the PN Hamiltonian from Ref. [84]
(labeled HnPN), and an alternative 3PM EOB Hamilto-
nian presented for circular orbits in Appendix B (labeled

HEOB,fPS
3PM ).

In Figs. 2 and 3 we compare the binding energy com-
puted in NR with the ones from PM and PM EOB
Hamiltonians versus either the binary’s orbital frequency
(Fig. 2) or angular momentum (Fig. 3), for mass ratios
q = 1 and q = 10. We clearly see the improvement of
the PM binding energy from 1PM to 3PM, especially at
low frequency. The PM-EOB binding energies generally
show better agreement with NR, but they have a much
smaller range of variation from 1PM to 3PM. The 3PM
result does slightly better than 1PM, while 2PM is worse
than the other two. Overall those results demonstrate
the value and relevance of pushing PM calculations at
higher order, and of further exploring how to use PM
results to improve EOB models.

To understand the impact of PM calculations for
LIGO/Virgo analyses, it is important to compare the
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FIG. 4. Energetics of PM Hamiltonians augmented by PN information. Same as in Fig. 2 but now we compare
to NR the binding energy of PM EOB Hamiltonians augmented by PN information. Notice that adding 3PM information at
3PN or above does not lead to a visible di↵erence from plain PN EOB Hamiltonians (the 3PM-3PN and 3PN curves, as well
as the 3PM-4PN and 4PN ones, are essentially on top of each other). Also included is a curve for an alternative 3PM EOB

Hamiltonian, HEOB,fPS
3PM , derived in Appendix B.

improvement coming from 4PM. The conclusion is that
it will be very useful to extend the knowledge of PM cal-
culations to higher orders — for example at least 4PM,
but even 5PM order.

Before ending this section we remark that the compar-
ison results that we have illustrated depend on several
choices. First of all, we have decided to compare the
binding energy extracted from NR simulations to results
obtained from an adiabatic sequence of circular orbits,
instead of the ones from the Hamilton equations with
radiation-reaction force. To illustrate the impact of this
choice we compare in Fig. 6 the binding energies of HEOB

3PN

and HEOB,PS
nPN obtained by evolving the Hamilton equa-

tions with a suitable radiation-reaction force (labeled “in-
spiral”) and using an adiabatic sequence of circular orbits
(labeled “circular”). The di↵erence is small early in the
evolution and grows as the inspiral approaches the ISCO,
where we observe a typical di↵erence in the binding en-
ergy of 5% to 10% (for q = 1).

Lastly, Fig. 7 demonstrates the di↵erence of calculat-
ing e(⌦) numerically, treating the various approximants
of the Hamiltonian as exact, and analytically as an ex-
pansion in (GM⌦). The plots show the results of calcu-
lating e(⌦) numerically from mPM and nPN Hamiltoni-
ans treated as “exact”, and also the curves from the ana-

lytically computed binding-energy EnPN(⌦) truncated at
2PN (i.e., (GM⌦)6/3 with respect to leading term) and
3PN (i.e., (GM⌦)8/3) order (see Eq. (232) in Ref. [9])
(labeled EnPN). As already noticed in Ref. [86], the dif-
ferences can be quite substantial. However, it is worth
re-emphasizing that if one calculates e(⌦) analytically
starting from either H3PM or H2PN one recovers the 2PN
result exactly.

IV. CONCLUSIONS

The study of the energetics conducted in this work,
using currently available PM Hamiltonians up to third
order, highlights two main points. Firstly, the binding
energy for circular orbits computed with the 3PM Hamil-
tonian of Ref. [81] and the 3PM EOB Hamiltonian of
Sec. II are closer to NR predictions than the ones com-
puted at lower PM orders, especially for small frequencies
(or high angular momenta) (see Figs. 2 and 3). This sug-
gests that similar improvements can be made by pushing
PM calculations to higher orders, leading to a more ac-
curate modeling of the inspiral phase.
Secondly, we find that higher-order PM calculations

of the conservative two-body dynamics would be needed

numerical relativity
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it will be very useful to extend the knowledge of PM cal-
culations to higher orders — for example at least 4PM,
but even 5PM order.

Before ending this section we remark that the compar-
ison results that we have illustrated depend on several
choices. First of all, we have decided to compare the
binding energy extracted from NR simulations to results
obtained from an adiabatic sequence of circular orbits,
instead of the ones from the Hamilton equations with
radiation-reaction force. To illustrate the impact of this
choice we compare in Fig. 6 the binding energies of HEOB
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and HEOB,PS
nPN obtained by evolving the Hamilton equa-

tions with a suitable radiation-reaction force (labeled “in-
spiral”) and using an adiabatic sequence of circular orbits
(labeled “circular”). The di↵erence is small early in the
evolution and grows as the inspiral approaches the ISCO,
where we observe a typical di↵erence in the binding en-
ergy of 5% to 10% (for q = 1).

Lastly, Fig. 7 demonstrates the di↵erence of calculat-
ing e(⌦) numerically, treating the various approximants
of the Hamiltonian as exact, and analytically as an ex-
pansion in (GM⌦). The plots show the results of calcu-
lating e(⌦) numerically from mPM and nPN Hamiltoni-
ans treated as “exact”, and also the curves from the ana-

lytically computed binding-energy EnPN(⌦) truncated at
2PN (i.e., (GM⌦)6/3 with respect to leading term) and
3PN (i.e., (GM⌦)8/3) order (see Eq. (232) in Ref. [9])
(labeled EnPN). As already noticed in Ref. [86], the dif-
ferences can be quite substantial. However, it is worth
re-emphasizing that if one calculates e(⌦) analytically
starting from either H3PM or H2PN one recovers the 2PN
result exactly.

IV. CONCLUSIONS

The study of the energetics conducted in this work,
using currently available PM Hamiltonians up to third
order, highlights two main points. Firstly, the binding
energy for circular orbits computed with the 3PM Hamil-
tonian of Ref. [81] and the 3PM EOB Hamiltonian of
Sec. II are closer to NR predictions than the ones com-
puted at lower PM orders, especially for small frequencies
(or high angular momenta) (see Figs. 2 and 3). This sug-
gests that similar improvements can be made by pushing
PM calculations to higher orders, leading to a more ac-
curate modeling of the inspiral phase.
Secondly, we find that higher-order PM calculations
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Generalized Unitarity
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FIG. 1. Unitarity cuts needed for the classical scattering am-
plitude. The shaded ovals represent tree amplitudes while the
exposed lines depict on-shell states. The wiggly and straight
lines denote gravitons and massive scalars, respectively.

explicitly the completeness of our second method, where
we work in strictly D = 4 so as to benefit from very
simple expressions for gauge-theory amplitudes in terms
of spinor helicity [19] variables. We then build the two
corresponding gravitational amplitudes via the KLT re-
lations [16]. At two loops, both approaches are efficient,
but at higher loops, helicity amplitudes offer a much more
compact starting point.
For concreteness, consider the first generalized unitar-

ity cut in Fig. 1, which we refer to as CH-cut and is com-
prised of products of four three-point and one four-point
amplitudes. Since four-point tree amplitudes are already
very simple there is little computational advantage to
imposing the on-shell conditions on matter lines. Thus,
we replace the pairs of three-point amplitudes at the top
and bottom of the cut with four-point amplitudes and
then impose the matter cut conditions at the end. The
resulting iterated two-particle cut is then

C2,2 =
∑

states

M4(2
s,−8, 7, 3s)M4(−5, 6,−7, 8)

×M4(1
s, 5,−6, 4s), (1)

where M4 denotes the tree-level four-point amplitude for
gravity minimally coupled to two massive scalars denoted
here by legs 1s, 2s, 3s, 4s. In this cut, legs 1s, 4s have
mass m1 while legs 2s, 3s have mass m2. All momenta in
each tree amplitude are taken to be outgoing. The sum
runs over graviton states for legs 5, 6, 7, 8, where the
minus signs on the labels indicate reversed momenta.
The four-point gravity tree amplitudes needed in the

cuts are obtained from gauge-theory ones via the field-
theory limit of KLT relations [16],

M4(1, 2, 3, 4) = −is12A4(1, 2, 3, 4)A4(1, 2, 4, 3), (2)

where the A4 are tree-level color-ordered gauge-theory
four-point amplitudes and sij = (pi + pj)2, working
in mostly minus metric signature throughout. Strictly
speaking, the KLT relations apply only to massless
states. However, they can be applied here by interpreting
the scalar masses, in the sense of dimensional reduction,
as extra-dimensional momentum components. While we
have not included coupling constants, these are easily
restored at the end of the calculation by including an
overall factor of (8πG)3, where G is Newton’s constant.
In terms of the spinor-helicity conventions of Ref. [20],

the independent tree-level gauge-theory amplitudes

needed in Eq. (1) are

A4(1
s, 2+, 3+, 4s) = i

m2
1 [2 3]

⟨2 3⟩ t12
,

A4(1
s, 2+, 3−, 4s) = i

⟨3| 1 |2]2

t23 t12
,

A4(1
−, 2−, 3+, 4+) = i

⟨1 2⟩4

⟨1 2⟩ ⟨2 3⟩ ⟨3 4⟩ ⟨4 1⟩ ,

A4(1
−, 2+, 3−, 4+) = i

⟨1 3⟩4

⟨1 2⟩ ⟨2 3⟩ ⟨3 4⟩ ⟨4 1⟩ , (3)

where tij = 2pi · pj and the ± denote gluon helicities.
The dilaton and antisymmetric tensor states are re-

moved from unitarity cuts by correlating the gluon helic-
ities on both sides of the double copy. The unwanted
states correspond to one gluon in the double copy of
positive helicity and the other of negative helicity. An
internal graviton state is obtained by taking the corre-
sponding gluons in the KLT formula in Eq. (2) to be of
the same helicity.
Using spinor evaluation techniques, it is straightfor-

ward to obtain a compact expression for the iterated two-
particle cut in Eq. (1) (e.g. see Ref. [25]). Imposing cuts
on the matter lines, as indicated in the first unitarity cut
of Fig. 1, further simplifies it and gives CH-cut. We find

CH-cut = 2i

[
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The simplicity of this expression is a reflection of the
double-copy structure: the same building blocks appear
in the simpler corresponding gauge-theory cut.
The spurious double-pole in s23 can be explicitly can-

celled by adding terms proportional to the Gram determi-
nant formed from the five independent momenta at two
loops which vanishes inD = 4. In fact, the expression de-
rived from the D-dimensional approach is automatically
free of such spurious singularities. While these Gram
determinants contribute quantum mechanically, we have
checked explicitly that they vanish in the classical limit.
This is not accidental—such terms are of the wrong form
to generate the required log(s23) needed to contribute to
the classical 3PM amplitude (see Ref. [24] for details).
The remaining two independent generalized unitarity

cuts in Fig. 2 are more complicated because they re-
quire five-point tree amplitudes with two massive scalar
legs. The four-dimensional input gauge-theory ampli-
tudes are simple to compute using modern methods
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FIG. 1. Unitarity cuts needed for the classical scattering am-
plitude. The shaded ovals represent tree amplitudes while the
exposed lines depict on-shell states. The wiggly and straight
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explicitly the completeness of our second method, where
we work in strictly D = 4 so as to benefit from very
simple expressions for gauge-theory amplitudes in terms
of spinor helicity [19] variables. We then build the two
corresponding gravitational amplitudes via the KLT re-
lations [16]. At two loops, both approaches are efficient,
but at higher loops, helicity amplitudes offer a much more
compact starting point.
For concreteness, consider the first generalized unitar-

ity cut in Fig. 1, which we refer to as CH-cut and is com-
prised of products of four three-point and one four-point
amplitudes. Since four-point tree amplitudes are already
very simple there is little computational advantage to
imposing the on-shell conditions on matter lines. Thus,
we replace the pairs of three-point amplitudes at the top
and bottom of the cut with four-point amplitudes and
then impose the matter cut conditions at the end. The
resulting iterated two-particle cut is then

C2,2 =
∑

states

M4(2
s,−8, 7, 3s)M4(−5, 6,−7, 8)

×M4(1
s, 5,−6, 4s), (1)

where M4 denotes the tree-level four-point amplitude for
gravity minimally coupled to two massive scalars denoted
here by legs 1s, 2s, 3s, 4s. In this cut, legs 1s, 4s have
mass m1 while legs 2s, 3s have mass m2. All momenta in
each tree amplitude are taken to be outgoing. The sum
runs over graviton states for legs 5, 6, 7, 8, where the
minus signs on the labels indicate reversed momenta.
The four-point gravity tree amplitudes needed in the

cuts are obtained from gauge-theory ones via the field-
theory limit of KLT relations [16],

M4(1, 2, 3, 4) = −is12A4(1, 2, 3, 4)A4(1, 2, 4, 3), (2)

where the A4 are tree-level color-ordered gauge-theory
four-point amplitudes and sij = (pi + pj)2, working
in mostly minus metric signature throughout. Strictly
speaking, the KLT relations apply only to massless
states. However, they can be applied here by interpreting
the scalar masses, in the sense of dimensional reduction,
as extra-dimensional momentum components. While we
have not included coupling constants, these are easily
restored at the end of the calculation by including an
overall factor of (8πG)3, where G is Newton’s constant.
In terms of the spinor-helicity conventions of Ref. [20],

the independent tree-level gauge-theory amplitudes

needed in Eq. (1) are

A4(1
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1 [2 3]
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,
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⟨1 2⟩ ⟨2 3⟩ ⟨3 4⟩ ⟨4 1⟩ , (3)

where tij = 2pi · pj and the ± denote gluon helicities.
The dilaton and antisymmetric tensor states are re-

moved from unitarity cuts by correlating the gluon helic-
ities on both sides of the double copy. The unwanted
states correspond to one gluon in the double copy of
positive helicity and the other of negative helicity. An
internal graviton state is obtained by taking the corre-
sponding gluons in the KLT formula in Eq. (2) to be of
the same helicity.
Using spinor evaluation techniques, it is straightfor-

ward to obtain a compact expression for the iterated two-
particle cut in Eq. (1) (e.g. see Ref. [25]). Imposing cuts
on the matter lines, as indicated in the first unitarity cut
of Fig. 1, further simplifies it and gives CH-cut. We find

CH-cut = 2i

[
1

(p5 − p8)2
+

1

(p5 + p7)2

]

×
[
s223m

4
1m

4
2 +

1

s623

∑

i=1,2

(
E4
i +O4

i + 6O2
i E2

i

)]
, (4)

where we have defined

E2
1 =

1

4
s223(t18t25 − t12t58)

2, O2
1 = E2

1 −m2
1m

2
2s

2
23t

2
58,

E2
2 =

1

4
s223(t17t25 − t12t57 − s23(t17 + t57))

2,

O2
2 = E2

2 −m2
1m

2
2s

2
23t

2
57. (5)

The simplicity of this expression is a reflection of the
double-copy structure: the same building blocks appear
in the simpler corresponding gauge-theory cut.
The spurious double-pole in s23 can be explicitly can-

celled by adding terms proportional to the Gram determi-
nant formed from the five independent momenta at two
loops which vanishes inD = 4. In fact, the expression de-
rived from the D-dimensional approach is automatically
free of such spurious singularities. While these Gram
determinants contribute quantum mechanically, we have
checked explicitly that they vanish in the classical limit.
This is not accidental—such terms are of the wrong form
to generate the required log(s23) needed to contribute to
the classical 3PM amplitude (see Ref. [24] for details).
The remaining two independent generalized unitarity

cuts in Fig. 2 are more complicated because they re-
quire five-point tree amplitudes with two massive scalar
legs. The four-dimensional input gauge-theory ampli-
tudes are simple to compute using modern methods
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plitude. The shaded ovals represent tree amplitudes while the
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explicitly the completeness of our second method, where
we work in strictly D = 4 so as to benefit from very
simple expressions for gauge-theory amplitudes in terms
of spinor helicity [19] variables. We then build the two
corresponding gravitational amplitudes via the KLT re-
lations [16]. At two loops, both approaches are efficient,
but at higher loops, helicity amplitudes offer a much more
compact starting point.
For concreteness, consider the first generalized unitar-

ity cut in Fig. 1, which we refer to as CH-cut and is com-
prised of products of four three-point and one four-point
amplitudes. Since four-point tree amplitudes are already
very simple there is little computational advantage to
imposing the on-shell conditions on matter lines. Thus,
we replace the pairs of three-point amplitudes at the top
and bottom of the cut with four-point amplitudes and
then impose the matter cut conditions at the end. The
resulting iterated two-particle cut is then

C2,2 =
∑

states

M4(2
s,−8, 7, 3s)M4(−5, 6,−7, 8)

×M4(1
s, 5,−6, 4s), (1)

where M4 denotes the tree-level four-point amplitude for
gravity minimally coupled to two massive scalars denoted
here by legs 1s, 2s, 3s, 4s. In this cut, legs 1s, 4s have
mass m1 while legs 2s, 3s have mass m2. All momenta in
each tree amplitude are taken to be outgoing. The sum
runs over graviton states for legs 5, 6, 7, 8, where the
minus signs on the labels indicate reversed momenta.
The four-point gravity tree amplitudes needed in the

cuts are obtained from gauge-theory ones via the field-
theory limit of KLT relations [16],

M4(1, 2, 3, 4) = −is12A4(1, 2, 3, 4)A4(1, 2, 4, 3), (2)

where the A4 are tree-level color-ordered gauge-theory
four-point amplitudes and sij = (pi + pj)2, working
in mostly minus metric signature throughout. Strictly
speaking, the KLT relations apply only to massless
states. However, they can be applied here by interpreting
the scalar masses, in the sense of dimensional reduction,
as extra-dimensional momentum components. While we
have not included coupling constants, these are easily
restored at the end of the calculation by including an
overall factor of (8πG)3, where G is Newton’s constant.
In terms of the spinor-helicity conventions of Ref. [20],

the independent tree-level gauge-theory amplitudes

needed in Eq. (1) are

A4(1
s, 2+, 3+, 4s) = i

m2
1 [2 3]

⟨2 3⟩ t12
,

A4(1
s, 2+, 3−, 4s) = i

⟨3| 1 |2]2
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,

A4(1
−, 2−, 3+, 4+) = i

⟨1 2⟩4

⟨1 2⟩ ⟨2 3⟩ ⟨3 4⟩ ⟨4 1⟩ ,

A4(1
−, 2+, 3−, 4+) = i

⟨1 3⟩4

⟨1 2⟩ ⟨2 3⟩ ⟨3 4⟩ ⟨4 1⟩ , (3)

where tij = 2pi · pj and the ± denote gluon helicities.
The dilaton and antisymmetric tensor states are re-

moved from unitarity cuts by correlating the gluon helic-
ities on both sides of the double copy. The unwanted
states correspond to one gluon in the double copy of
positive helicity and the other of negative helicity. An
internal graviton state is obtained by taking the corre-
sponding gluons in the KLT formula in Eq. (2) to be of
the same helicity.
Using spinor evaluation techniques, it is straightfor-

ward to obtain a compact expression for the iterated two-
particle cut in Eq. (1) (e.g. see Ref. [25]). Imposing cuts
on the matter lines, as indicated in the first unitarity cut
of Fig. 1, further simplifies it and gives CH-cut. We find

CH-cut = 2i

[
1
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+

1
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]

×
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The simplicity of this expression is a reflection of the
double-copy structure: the same building blocks appear
in the simpler corresponding gauge-theory cut.
The spurious double-pole in s23 can be explicitly can-

celled by adding terms proportional to the Gram determi-
nant formed from the five independent momenta at two
loops which vanishes inD = 4. In fact, the expression de-
rived from the D-dimensional approach is automatically
free of such spurious singularities. While these Gram
determinants contribute quantum mechanically, we have
checked explicitly that they vanish in the classical limit.
This is not accidental—such terms are of the wrong form
to generate the required log(s23) needed to contribute to
the classical 3PM amplitude (see Ref. [24] for details).
The remaining two independent generalized unitarity

cuts in Fig. 2 are more complicated because they re-
quire five-point tree amplitudes with two massive scalar
legs. The four-dimensional input gauge-theory ampli-
tudes are simple to compute using modern methods
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plitude. The shaded ovals represent tree amplitudes while the
exposed lines depict on-shell states. The wiggly and straight
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explicitly the completeness of our second method, where
we work in strictly D = 4 so as to benefit from very
simple expressions for gauge-theory amplitudes in terms
of spinor helicity [19] variables. We then build the two
corresponding gravitational amplitudes via the KLT re-
lations [16]. At two loops, both approaches are efficient,
but at higher loops, helicity amplitudes offer a much more
compact starting point.
For concreteness, consider the first generalized unitar-

ity cut in Fig. 1, which we refer to as CH-cut and is com-
prised of products of four three-point and one four-point
amplitudes. Since four-point tree amplitudes are already
very simple there is little computational advantage to
imposing the on-shell conditions on matter lines. Thus,
we replace the pairs of three-point amplitudes at the top
and bottom of the cut with four-point amplitudes and
then impose the matter cut conditions at the end. The
resulting iterated two-particle cut is then

C2,2 =
∑

states

M4(2
s,−8, 7, 3s)M4(−5, 6,−7, 8)

×M4(1
s, 5,−6, 4s), (1)

where M4 denotes the tree-level four-point amplitude for
gravity minimally coupled to two massive scalars denoted
here by legs 1s, 2s, 3s, 4s. In this cut, legs 1s, 4s have
mass m1 while legs 2s, 3s have mass m2. All momenta in
each tree amplitude are taken to be outgoing. The sum
runs over graviton states for legs 5, 6, 7, 8, where the
minus signs on the labels indicate reversed momenta.
The four-point gravity tree amplitudes needed in the

cuts are obtained from gauge-theory ones via the field-
theory limit of KLT relations [16],

M4(1, 2, 3, 4) = −is12A4(1, 2, 3, 4)A4(1, 2, 4, 3), (2)

where the A4 are tree-level color-ordered gauge-theory
four-point amplitudes and sij = (pi + pj)2, working
in mostly minus metric signature throughout. Strictly
speaking, the KLT relations apply only to massless
states. However, they can be applied here by interpreting
the scalar masses, in the sense of dimensional reduction,
as extra-dimensional momentum components. While we
have not included coupling constants, these are easily
restored at the end of the calculation by including an
overall factor of (8πG)3, where G is Newton’s constant.
In terms of the spinor-helicity conventions of Ref. [20],

the independent tree-level gauge-theory amplitudes

needed in Eq. (1) are

A4(1
s, 2+, 3+, 4s) = i

m2
1 [2 3]

⟨2 3⟩ t12
,

A4(1
s, 2+, 3−, 4s) = i
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,

A4(1
−, 2−, 3+, 4+) = i
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A4(1
−, 2+, 3−, 4+) = i

⟨1 3⟩4

⟨1 2⟩ ⟨2 3⟩ ⟨3 4⟩ ⟨4 1⟩ , (3)

where tij = 2pi · pj and the ± denote gluon helicities.
The dilaton and antisymmetric tensor states are re-

moved from unitarity cuts by correlating the gluon helic-
ities on both sides of the double copy. The unwanted
states correspond to one gluon in the double copy of
positive helicity and the other of negative helicity. An
internal graviton state is obtained by taking the corre-
sponding gluons in the KLT formula in Eq. (2) to be of
the same helicity.
Using spinor evaluation techniques, it is straightfor-

ward to obtain a compact expression for the iterated two-
particle cut in Eq. (1) (e.g. see Ref. [25]). Imposing cuts
on the matter lines, as indicated in the first unitarity cut
of Fig. 1, further simplifies it and gives CH-cut. We find

CH-cut = 2i

[
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+
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The simplicity of this expression is a reflection of the
double-copy structure: the same building blocks appear
in the simpler corresponding gauge-theory cut.
The spurious double-pole in s23 can be explicitly can-

celled by adding terms proportional to the Gram determi-
nant formed from the five independent momenta at two
loops which vanishes inD = 4. In fact, the expression de-
rived from the D-dimensional approach is automatically
free of such spurious singularities. While these Gram
determinants contribute quantum mechanically, we have
checked explicitly that they vanish in the classical limit.
This is not accidental—such terms are of the wrong form
to generate the required log(s23) needed to contribute to
the classical 3PM amplitude (see Ref. [24] for details).
The remaining two independent generalized unitarity

cuts in Fig. 2 are more complicated because they re-
quire five-point tree amplitudes with two massive scalar
legs. The four-dimensional input gauge-theory ampli-
tudes are simple to compute using modern methods
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FIG. 1. Unitarity cuts needed for the classical scattering am-
plitude. The shaded ovals represent tree amplitudes while the
exposed lines depict on-shell states. The wiggly and straight
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explicitly the completeness of our second method, where
we work in strictly D = 4 so as to benefit from very
simple expressions for gauge-theory amplitudes in terms
of spinor helicity [19] variables. We then build the two
corresponding gravitational amplitudes via the KLT re-
lations [16]. At two loops, both approaches are efficient,
but at higher loops, helicity amplitudes offer a much more
compact starting point.
For concreteness, consider the first generalized unitar-

ity cut in Fig. 1, which we refer to as CH-cut and is com-
prised of products of four three-point and one four-point
amplitudes. Since four-point tree amplitudes are already
very simple there is little computational advantage to
imposing the on-shell conditions on matter lines. Thus,
we replace the pairs of three-point amplitudes at the top
and bottom of the cut with four-point amplitudes and
then impose the matter cut conditions at the end. The
resulting iterated two-particle cut is then

C2,2 =
∑

states

M4(2
s,−8, 7, 3s)M4(−5, 6,−7, 8)

×M4(1
s, 5,−6, 4s), (1)

where M4 denotes the tree-level four-point amplitude for
gravity minimally coupled to two massive scalars denoted
here by legs 1s, 2s, 3s, 4s. In this cut, legs 1s, 4s have
mass m1 while legs 2s, 3s have mass m2. All momenta in
each tree amplitude are taken to be outgoing. The sum
runs over graviton states for legs 5, 6, 7, 8, where the
minus signs on the labels indicate reversed momenta.
The four-point gravity tree amplitudes needed in the

cuts are obtained from gauge-theory ones via the field-
theory limit of KLT relations [16],

M4(1, 2, 3, 4) = −is12A4(1, 2, 3, 4)A4(1, 2, 4, 3), (2)

where the A4 are tree-level color-ordered gauge-theory
four-point amplitudes and sij = (pi + pj)2, working
in mostly minus metric signature throughout. Strictly
speaking, the KLT relations apply only to massless
states. However, they can be applied here by interpreting
the scalar masses, in the sense of dimensional reduction,
as extra-dimensional momentum components. While we
have not included coupling constants, these are easily
restored at the end of the calculation by including an
overall factor of (8πG)3, where G is Newton’s constant.
In terms of the spinor-helicity conventions of Ref. [20],

the independent tree-level gauge-theory amplitudes

needed in Eq. (1) are

A4(1
s, 2+, 3+, 4s) = i

m2
1 [2 3]

⟨2 3⟩ t12
,
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,
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A4(1
−, 2+, 3−, 4+) = i

⟨1 3⟩4

⟨1 2⟩ ⟨2 3⟩ ⟨3 4⟩ ⟨4 1⟩ , (3)

where tij = 2pi · pj and the ± denote gluon helicities.
The dilaton and antisymmetric tensor states are re-

moved from unitarity cuts by correlating the gluon helic-
ities on both sides of the double copy. The unwanted
states correspond to one gluon in the double copy of
positive helicity and the other of negative helicity. An
internal graviton state is obtained by taking the corre-
sponding gluons in the KLT formula in Eq. (2) to be of
the same helicity.
Using spinor evaluation techniques, it is straightfor-

ward to obtain a compact expression for the iterated two-
particle cut in Eq. (1) (e.g. see Ref. [25]). Imposing cuts
on the matter lines, as indicated in the first unitarity cut
of Fig. 1, further simplifies it and gives CH-cut. We find

CH-cut = 2i

[
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+

1
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×
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The simplicity of this expression is a reflection of the
double-copy structure: the same building blocks appear
in the simpler corresponding gauge-theory cut.
The spurious double-pole in s23 can be explicitly can-

celled by adding terms proportional to the Gram determi-
nant formed from the five independent momenta at two
loops which vanishes inD = 4. In fact, the expression de-
rived from the D-dimensional approach is automatically
free of such spurious singularities. While these Gram
determinants contribute quantum mechanically, we have
checked explicitly that they vanish in the classical limit.
This is not accidental—such terms are of the wrong form
to generate the required log(s23) needed to contribute to
the classical 3PM amplitude (see Ref. [24] for details).
The remaining two independent generalized unitarity

cuts in Fig. 2 are more complicated because they re-
quire five-point tree amplitudes with two massive scalar
legs. The four-dimensional input gauge-theory ampli-
tudes are simple to compute using modern methods
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plitude. The shaded ovals represent tree amplitudes while the
exposed lines depict on-shell states. The wiggly and straight
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explicitly the completeness of our second method, where
we work in strictly D = 4 so as to benefit from very
simple expressions for gauge-theory amplitudes in terms
of spinor helicity [19] variables. We then build the two
corresponding gravitational amplitudes via the KLT re-
lations [16]. At two loops, both approaches are efficient,
but at higher loops, helicity amplitudes offer a much more
compact starting point.
For concreteness, consider the first generalized unitar-

ity cut in Fig. 1, which we refer to as CH-cut and is com-
prised of products of four three-point and one four-point
amplitudes. Since four-point tree amplitudes are already
very simple there is little computational advantage to
imposing the on-shell conditions on matter lines. Thus,
we replace the pairs of three-point amplitudes at the top
and bottom of the cut with four-point amplitudes and
then impose the matter cut conditions at the end. The
resulting iterated two-particle cut is then

C2,2 =
∑

states

M4(2
s,−8, 7, 3s)M4(−5, 6,−7, 8)

×M4(1
s, 5,−6, 4s), (1)

where M4 denotes the tree-level four-point amplitude for
gravity minimally coupled to two massive scalars denoted
here by legs 1s, 2s, 3s, 4s. In this cut, legs 1s, 4s have
mass m1 while legs 2s, 3s have mass m2. All momenta in
each tree amplitude are taken to be outgoing. The sum
runs over graviton states for legs 5, 6, 7, 8, where the
minus signs on the labels indicate reversed momenta.
The four-point gravity tree amplitudes needed in the

cuts are obtained from gauge-theory ones via the field-
theory limit of KLT relations [16],

M4(1, 2, 3, 4) = −is12A4(1, 2, 3, 4)A4(1, 2, 4, 3), (2)

where the A4 are tree-level color-ordered gauge-theory
four-point amplitudes and sij = (pi + pj)2, working
in mostly minus metric signature throughout. Strictly
speaking, the KLT relations apply only to massless
states. However, they can be applied here by interpreting
the scalar masses, in the sense of dimensional reduction,
as extra-dimensional momentum components. While we
have not included coupling constants, these are easily
restored at the end of the calculation by including an
overall factor of (8πG)3, where G is Newton’s constant.
In terms of the spinor-helicity conventions of Ref. [20],

the independent tree-level gauge-theory amplitudes

needed in Eq. (1) are

A4(1
s, 2+, 3+, 4s) = i

m2
1 [2 3]
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,
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,
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⟨1 2⟩ ⟨2 3⟩ ⟨3 4⟩ ⟨4 1⟩ , (3)

where tij = 2pi · pj and the ± denote gluon helicities.
The dilaton and antisymmetric tensor states are re-

moved from unitarity cuts by correlating the gluon helic-
ities on both sides of the double copy. The unwanted
states correspond to one gluon in the double copy of
positive helicity and the other of negative helicity. An
internal graviton state is obtained by taking the corre-
sponding gluons in the KLT formula in Eq. (2) to be of
the same helicity.
Using spinor evaluation techniques, it is straightfor-

ward to obtain a compact expression for the iterated two-
particle cut in Eq. (1) (e.g. see Ref. [25]). Imposing cuts
on the matter lines, as indicated in the first unitarity cut
of Fig. 1, further simplifies it and gives CH-cut. We find

CH-cut = 2i

[
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+

1
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The simplicity of this expression is a reflection of the
double-copy structure: the same building blocks appear
in the simpler corresponding gauge-theory cut.
The spurious double-pole in s23 can be explicitly can-

celled by adding terms proportional to the Gram determi-
nant formed from the five independent momenta at two
loops which vanishes inD = 4. In fact, the expression de-
rived from the D-dimensional approach is automatically
free of such spurious singularities. While these Gram
determinants contribute quantum mechanically, we have
checked explicitly that they vanish in the classical limit.
This is not accidental—such terms are of the wrong form
to generate the required log(s23) needed to contribute to
the classical 3PM amplitude (see Ref. [24] for details).
The remaining two independent generalized unitarity

cuts in Fig. 2 are more complicated because they re-
quire five-point tree amplitudes with two massive scalar
legs. The four-dimensional input gauge-theory ampli-
tudes are simple to compute using modern methods
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FIG. 1. Unitarity cuts needed for the classical scattering am-
plitude. The shaded ovals represent tree amplitudes while the
exposed lines depict on-shell states. The wiggly and straight
lines denote gravitons and massive scalars, respectively.

explicitly the completeness of our second method, where
we work in strictly D = 4 so as to benefit from very
simple expressions for gauge-theory amplitudes in terms
of spinor helicity [19] variables. We then build the two
corresponding gravitational amplitudes via the KLT re-
lations [16]. At two loops, both approaches are efficient,
but at higher loops, helicity amplitudes offer a much more
compact starting point.
For concreteness, consider the first generalized unitar-

ity cut in Fig. 1, which we refer to as CH-cut and is com-
prised of products of four three-point and one four-point
amplitudes. Since four-point tree amplitudes are already
very simple there is little computational advantage to
imposing the on-shell conditions on matter lines. Thus,
we replace the pairs of three-point amplitudes at the top
and bottom of the cut with four-point amplitudes and
then impose the matter cut conditions at the end. The
resulting iterated two-particle cut is then

C2,2 =
∑

states

M4(2
s,−8, 7, 3s)M4(−5, 6,−7, 8)

×M4(1
s, 5,−6, 4s), (1)

where M4 denotes the tree-level four-point amplitude for
gravity minimally coupled to two massive scalars denoted
here by legs 1s, 2s, 3s, 4s. In this cut, legs 1s, 4s have
mass m1 while legs 2s, 3s have mass m2. All momenta in
each tree amplitude are taken to be outgoing. The sum
runs over graviton states for legs 5, 6, 7, 8, where the
minus signs on the labels indicate reversed momenta.
The four-point gravity tree amplitudes needed in the

cuts are obtained from gauge-theory ones via the field-
theory limit of KLT relations [16],

M4(1, 2, 3, 4) = −is12A4(1, 2, 3, 4)A4(1, 2, 4, 3), (2)

where the A4 are tree-level color-ordered gauge-theory
four-point amplitudes and sij = (pi + pj)2, working
in mostly minus metric signature throughout. Strictly
speaking, the KLT relations apply only to massless
states. However, they can be applied here by interpreting
the scalar masses, in the sense of dimensional reduction,
as extra-dimensional momentum components. While we
have not included coupling constants, these are easily
restored at the end of the calculation by including an
overall factor of (8πG)3, where G is Newton’s constant.
In terms of the spinor-helicity conventions of Ref. [20],

the independent tree-level gauge-theory amplitudes

needed in Eq. (1) are

A4(1
s, 2+, 3+, 4s) = i

m2
1 [2 3]

⟨2 3⟩ t12
,

A4(1
s, 2+, 3−, 4s) = i

⟨3| 1 |2]2

t23 t12
,

A4(1
−, 2−, 3+, 4+) = i

⟨1 2⟩4

⟨1 2⟩ ⟨2 3⟩ ⟨3 4⟩ ⟨4 1⟩ ,

A4(1
−, 2+, 3−, 4+) = i

⟨1 3⟩4

⟨1 2⟩ ⟨2 3⟩ ⟨3 4⟩ ⟨4 1⟩ , (3)

where tij = 2pi · pj and the ± denote gluon helicities.
The dilaton and antisymmetric tensor states are re-

moved from unitarity cuts by correlating the gluon helic-
ities on both sides of the double copy. The unwanted
states correspond to one gluon in the double copy of
positive helicity and the other of negative helicity. An
internal graviton state is obtained by taking the corre-
sponding gluons in the KLT formula in Eq. (2) to be of
the same helicity.
Using spinor evaluation techniques, it is straightfor-

ward to obtain a compact expression for the iterated two-
particle cut in Eq. (1) (e.g. see Ref. [25]). Imposing cuts
on the matter lines, as indicated in the first unitarity cut
of Fig. 1, further simplifies it and gives CH-cut. We find

CH-cut = 2i

[
1

(p5 − p8)2
+

1
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×
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The simplicity of this expression is a reflection of the
double-copy structure: the same building blocks appear
in the simpler corresponding gauge-theory cut.
The spurious double-pole in s23 can be explicitly can-

celled by adding terms proportional to the Gram determi-
nant formed from the five independent momenta at two
loops which vanishes inD = 4. In fact, the expression de-
rived from the D-dimensional approach is automatically
free of such spurious singularities. While these Gram
determinants contribute quantum mechanically, we have
checked explicitly that they vanish in the classical limit.
This is not accidental—such terms are of the wrong form
to generate the required log(s23) needed to contribute to
the classical 3PM amplitude (see Ref. [24] for details).
The remaining two independent generalized unitarity

cuts in Fig. 2 are more complicated because they re-
quire five-point tree amplitudes with two massive scalar
legs. The four-dimensional input gauge-theory ampli-
tudes are simple to compute using modern methods

Product of three GR four-point amplitudes, obtained from YM amplitudes

(gluon)2 = graviton + dilaton + axion by correlating gluon helicities in copies
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FIG. 1. Unitarity cuts needed for the classical scattering am-
plitude. The shaded ovals represent tree amplitudes while the
exposed lines depict on-shell states. The wiggly and straight
lines denote gravitons and massive scalars, respectively.

explicitly the completeness of our second method, where
we work in strictly D = 4 so as to benefit from very
simple expressions for gauge-theory amplitudes in terms
of spinor helicity [19] variables. We then build the two
corresponding gravitational amplitudes via the KLT re-
lations [16]. At two loops, both approaches are efficient,
but at higher loops, helicity amplitudes offer a much more
compact starting point.
For concreteness, consider the first generalized unitar-

ity cut in Fig. 1, which we refer to as CH-cut and is com-
prised of products of four three-point and one four-point
amplitudes. Since four-point tree amplitudes are already
very simple there is little computational advantage to
imposing the on-shell conditions on matter lines. Thus,
we replace the pairs of three-point amplitudes at the top
and bottom of the cut with four-point amplitudes and
then impose the matter cut conditions at the end. The
resulting iterated two-particle cut is then

C2,2 =
∑

states

M4(2
s,−8, 7, 3s)M4(−5, 6,−7, 8)

×M4(1
s, 5,−6, 4s), (1)

where M4 denotes the tree-level four-point amplitude for
gravity minimally coupled to two massive scalars denoted
here by legs 1s, 2s, 3s, 4s. In this cut, legs 1s, 4s have
mass m1 while legs 2s, 3s have mass m2. All momenta in
each tree amplitude are taken to be outgoing. The sum
runs over graviton states for legs 5, 6, 7, 8, where the
minus signs on the labels indicate reversed momenta.
The four-point gravity tree amplitudes needed in the

cuts are obtained from gauge-theory ones via the field-
theory limit of KLT relations [16],

M4(1, 2, 3, 4) = −is12A4(1, 2, 3, 4)A4(1, 2, 4, 3), (2)

where the A4 are tree-level color-ordered gauge-theory
four-point amplitudes and sij = (pi + pj)2, working
in mostly minus metric signature throughout. Strictly
speaking, the KLT relations apply only to massless
states. However, they can be applied here by interpreting
the scalar masses, in the sense of dimensional reduction,
as extra-dimensional momentum components. While we
have not included coupling constants, these are easily
restored at the end of the calculation by including an
overall factor of (8πG)3, where G is Newton’s constant.
In terms of the spinor-helicity conventions of Ref. [20],

the independent tree-level gauge-theory amplitudes

needed in Eq. (1) are

A4(1
s, 2+, 3+, 4s) = i

m2
1 [2 3]

⟨2 3⟩ t12
,

A4(1
s, 2+, 3−, 4s) = i
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,

A4(1
−, 2−, 3+, 4+) = i

⟨1 2⟩4

⟨1 2⟩ ⟨2 3⟩ ⟨3 4⟩ ⟨4 1⟩ ,

A4(1
−, 2+, 3−, 4+) = i

⟨1 3⟩4

⟨1 2⟩ ⟨2 3⟩ ⟨3 4⟩ ⟨4 1⟩ , (3)

where tij = 2pi · pj and the ± denote gluon helicities.
The dilaton and antisymmetric tensor states are re-

moved from unitarity cuts by correlating the gluon helic-
ities on both sides of the double copy. The unwanted
states correspond to one gluon in the double copy of
positive helicity and the other of negative helicity. An
internal graviton state is obtained by taking the corre-
sponding gluons in the KLT formula in Eq. (2) to be of
the same helicity.
Using spinor evaluation techniques, it is straightfor-

ward to obtain a compact expression for the iterated two-
particle cut in Eq. (1) (e.g. see Ref. [25]). Imposing cuts
on the matter lines, as indicated in the first unitarity cut
of Fig. 1, further simplifies it and gives CH-cut. We find

CH-cut = 2i

[
1

(p5 − p8)2
+

1

(p5 + p7)2

]

×
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The simplicity of this expression is a reflection of the
double-copy structure: the same building blocks appear
in the simpler corresponding gauge-theory cut.
The spurious double-pole in s23 can be explicitly can-

celled by adding terms proportional to the Gram determi-
nant formed from the five independent momenta at two
loops which vanishes inD = 4. In fact, the expression de-
rived from the D-dimensional approach is automatically
free of such spurious singularities. While these Gram
determinants contribute quantum mechanically, we have
checked explicitly that they vanish in the classical limit.
This is not accidental—such terms are of the wrong form
to generate the required log(s23) needed to contribute to
the classical 3PM amplitude (see Ref. [24] for details).
The remaining two independent generalized unitarity

cuts in Fig. 2 are more complicated because they re-
quire five-point tree amplitudes with two massive scalar
legs. The four-dimensional input gauge-theory ampli-
tudes are simple to compute using modern methods

sij = (pi + pj)
2
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FIG. 1. Unitarity cuts needed for the classical scattering am-
plitude. The shaded ovals represent tree amplitudes while the
exposed lines depict on-shell states. The wiggly and straight
lines denote gravitons and massive scalars, respectively.

explicitly the completeness of our second method, where
we work in strictly D = 4 so as to benefit from very
simple expressions for gauge-theory amplitudes in terms
of spinor helicity [19] variables. We then build the two
corresponding gravitational amplitudes via the KLT re-
lations [16]. At two loops, both approaches are efficient,
but at higher loops, helicity amplitudes offer a much more
compact starting point.
For concreteness, consider the first generalized unitar-

ity cut in Fig. 1, which we refer to as CH-cut and is com-
prised of products of four three-point and one four-point
amplitudes. Since four-point tree amplitudes are already
very simple there is little computational advantage to
imposing the on-shell conditions on matter lines. Thus,
we replace the pairs of three-point amplitudes at the top
and bottom of the cut with four-point amplitudes and
then impose the matter cut conditions at the end. The
resulting iterated two-particle cut is then

C2,2 =
∑

states

M4(2
s,−8, 7, 3s)M4(−5, 6,−7, 8)

×M4(1
s, 5,−6, 4s), (1)

where M4 denotes the tree-level four-point amplitude for
gravity minimally coupled to two massive scalars denoted
here by legs 1s, 2s, 3s, 4s. In this cut, legs 1s, 4s have
mass m1 while legs 2s, 3s have mass m2. All momenta in
each tree amplitude are taken to be outgoing. The sum
runs over graviton states for legs 5, 6, 7, 8, where the
minus signs on the labels indicate reversed momenta.
The four-point gravity tree amplitudes needed in the

cuts are obtained from gauge-theory ones via the field-
theory limit of KLT relations [16],

M4(1, 2, 3, 4) = −is12A4(1, 2, 3, 4)A4(1, 2, 4, 3), (2)

where the A4 are tree-level color-ordered gauge-theory
four-point amplitudes and sij = (pi + pj)2, working
in mostly minus metric signature throughout. Strictly
speaking, the KLT relations apply only to massless
states. However, they can be applied here by interpreting
the scalar masses, in the sense of dimensional reduction,
as extra-dimensional momentum components. While we
have not included coupling constants, these are easily
restored at the end of the calculation by including an
overall factor of (8πG)3, where G is Newton’s constant.
In terms of the spinor-helicity conventions of Ref. [20],

the independent tree-level gauge-theory amplitudes

needed in Eq. (1) are

A4(1
s, 2+, 3+, 4s) = i

m2
1 [2 3]

⟨2 3⟩ t12
,

A4(1
s, 2+, 3−, 4s) = i
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,

A4(1
−, 2−, 3+, 4+) = i

⟨1 2⟩4

⟨1 2⟩ ⟨2 3⟩ ⟨3 4⟩ ⟨4 1⟩ ,

A4(1
−, 2+, 3−, 4+) = i

⟨1 3⟩4

⟨1 2⟩ ⟨2 3⟩ ⟨3 4⟩ ⟨4 1⟩ , (3)

where tij = 2pi · pj and the ± denote gluon helicities.
The dilaton and antisymmetric tensor states are re-

moved from unitarity cuts by correlating the gluon helic-
ities on both sides of the double copy. The unwanted
states correspond to one gluon in the double copy of
positive helicity and the other of negative helicity. An
internal graviton state is obtained by taking the corre-
sponding gluons in the KLT formula in Eq. (2) to be of
the same helicity.
Using spinor evaluation techniques, it is straightfor-

ward to obtain a compact expression for the iterated two-
particle cut in Eq. (1) (e.g. see Ref. [25]). Imposing cuts
on the matter lines, as indicated in the first unitarity cut
of Fig. 1, further simplifies it and gives CH-cut. We find

CH-cut = 2i

[
1

(p5 − p8)2
+

1
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]

×
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The simplicity of this expression is a reflection of the
double-copy structure: the same building blocks appear
in the simpler corresponding gauge-theory cut.
The spurious double-pole in s23 can be explicitly can-

celled by adding terms proportional to the Gram determi-
nant formed from the five independent momenta at two
loops which vanishes inD = 4. In fact, the expression de-
rived from the D-dimensional approach is automatically
free of such spurious singularities. While these Gram
determinants contribute quantum mechanically, we have
checked explicitly that they vanish in the classical limit.
This is not accidental—such terms are of the wrong form
to generate the required log(s23) needed to contribute to
the classical 3PM amplitude (see Ref. [24] for details).
The remaining two independent generalized unitarity

cuts in Fig. 2 are more complicated because they re-
quire five-point tree amplitudes with two massive scalar
legs. The four-dimensional input gauge-theory ampli-
tudes are simple to compute using modern methods
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FIG. 1. Unitarity cuts needed for the classical scattering am-
plitude. The shaded ovals represent tree amplitudes while the
exposed lines depict on-shell states. The wiggly and straight
lines denote gravitons and massive scalars, respectively.

explicitly the completeness of our second method, where
we work in strictly D = 4 so as to benefit from very
simple expressions for gauge-theory amplitudes in terms
of spinor helicity [19] variables. We then build the two
corresponding gravitational amplitudes via the KLT re-
lations [16]. At two loops, both approaches are efficient,
but at higher loops, helicity amplitudes offer a much more
compact starting point.
For concreteness, consider the first generalized unitar-

ity cut in Fig. 1, which we refer to as CH-cut and is com-
prised of products of four three-point and one four-point
amplitudes. Since four-point tree amplitudes are already
very simple there is little computational advantage to
imposing the on-shell conditions on matter lines. Thus,
we replace the pairs of three-point amplitudes at the top
and bottom of the cut with four-point amplitudes and
then impose the matter cut conditions at the end. The
resulting iterated two-particle cut is then

C2,2 =
∑

states

M4(2
s,−8, 7, 3s)M4(−5, 6,−7, 8)

×M4(1
s, 5,−6, 4s), (1)

where M4 denotes the tree-level four-point amplitude for
gravity minimally coupled to two massive scalars denoted
here by legs 1s, 2s, 3s, 4s. In this cut, legs 1s, 4s have
mass m1 while legs 2s, 3s have mass m2. All momenta in
each tree amplitude are taken to be outgoing. The sum
runs over graviton states for legs 5, 6, 7, 8, where the
minus signs on the labels indicate reversed momenta.
The four-point gravity tree amplitudes needed in the

cuts are obtained from gauge-theory ones via the field-
theory limit of KLT relations [16],

M4(1, 2, 3, 4) = −is12A4(1, 2, 3, 4)A4(1, 2, 4, 3), (2)

where the A4 are tree-level color-ordered gauge-theory
four-point amplitudes and sij = (pi + pj)2, working
in mostly minus metric signature throughout. Strictly
speaking, the KLT relations apply only to massless
states. However, they can be applied here by interpreting
the scalar masses, in the sense of dimensional reduction,
as extra-dimensional momentum components. While we
have not included coupling constants, these are easily
restored at the end of the calculation by including an
overall factor of (8πG)3, where G is Newton’s constant.
In terms of the spinor-helicity conventions of Ref. [20],

the independent tree-level gauge-theory amplitudes

needed in Eq. (1) are

A4(1
s, 2+, 3+, 4s) = i

m2
1 [2 3]

⟨2 3⟩ t12
,

A4(1
s, 2+, 3−, 4s) = i

⟨3| 1 |2]2

t23 t12
,

A4(1
−, 2−, 3+, 4+) = i

⟨1 2⟩4

⟨1 2⟩ ⟨2 3⟩ ⟨3 4⟩ ⟨4 1⟩ ,

A4(1
−, 2+, 3−, 4+) = i

⟨1 3⟩4

⟨1 2⟩ ⟨2 3⟩ ⟨3 4⟩ ⟨4 1⟩ , (3)

where tij = 2pi · pj and the ± denote gluon helicities.
The dilaton and antisymmetric tensor states are re-

moved from unitarity cuts by correlating the gluon helic-
ities on both sides of the double copy. The unwanted
states correspond to one gluon in the double copy of
positive helicity and the other of negative helicity. An
internal graviton state is obtained by taking the corre-
sponding gluons in the KLT formula in Eq. (2) to be of
the same helicity.
Using spinor evaluation techniques, it is straightfor-

ward to obtain a compact expression for the iterated two-
particle cut in Eq. (1) (e.g. see Ref. [25]). Imposing cuts
on the matter lines, as indicated in the first unitarity cut
of Fig. 1, further simplifies it and gives CH-cut. We find

CH-cut = 2i

[
1

(p5 − p8)2
+

1
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]

×
[
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The simplicity of this expression is a reflection of the
double-copy structure: the same building blocks appear
in the simpler corresponding gauge-theory cut.
The spurious double-pole in s23 can be explicitly can-

celled by adding terms proportional to the Gram determi-
nant formed from the five independent momenta at two
loops which vanishes inD = 4. In fact, the expression de-
rived from the D-dimensional approach is automatically
free of such spurious singularities. While these Gram
determinants contribute quantum mechanically, we have
checked explicitly that they vanish in the classical limit.
This is not accidental—such terms are of the wrong form
to generate the required log(s23) needed to contribute to
the classical 3PM amplitude (see Ref. [24] for details).
The remaining two independent generalized unitarity

cuts in Fig. 2 are more complicated because they re-
quire five-point tree amplitudes with two massive scalar
legs. The four-dimensional input gauge-theory ampli-
tudes are simple to compute using modern methods

tij = 2pi · pj
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FIG. 1. Unitarity cuts needed for the classical scattering am-
plitude. The shaded ovals represent tree amplitudes while the
exposed lines depict on-shell states. The wiggly and straight
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explicitly the completeness of our second method, where
we work in strictly D = 4 so as to benefit from very
simple expressions for gauge-theory amplitudes in terms
of spinor helicity [19] variables. We then build the two
corresponding gravitational amplitudes via the KLT re-
lations [16]. At two loops, both approaches are efficient,
but at higher loops, helicity amplitudes offer a much more
compact starting point.
For concreteness, consider the first generalized unitar-

ity cut in Fig. 1, which we refer to as CH-cut and is com-
prised of products of four three-point and one four-point
amplitudes. Since four-point tree amplitudes are already
very simple there is little computational advantage to
imposing the on-shell conditions on matter lines. Thus,
we replace the pairs of three-point amplitudes at the top
and bottom of the cut with four-point amplitudes and
then impose the matter cut conditions at the end. The
resulting iterated two-particle cut is then

C2,2 =
∑

states

M4(2
s,−8, 7, 3s)M4(−5, 6,−7, 8)

×M4(1
s, 5,−6, 4s), (1)

where M4 denotes the tree-level four-point amplitude for
gravity minimally coupled to two massive scalars denoted
here by legs 1s, 2s, 3s, 4s. In this cut, legs 1s, 4s have
mass m1 while legs 2s, 3s have mass m2. All momenta in
each tree amplitude are taken to be outgoing. The sum
runs over graviton states for legs 5, 6, 7, 8, where the
minus signs on the labels indicate reversed momenta.
The four-point gravity tree amplitudes needed in the

cuts are obtained from gauge-theory ones via the field-
theory limit of KLT relations [16],

M4(1, 2, 3, 4) = −is12A4(1, 2, 3, 4)A4(1, 2, 4, 3), (2)

where the A4 are tree-level color-ordered gauge-theory
four-point amplitudes and sij = (pi + pj)2, working
in mostly minus metric signature throughout. Strictly
speaking, the KLT relations apply only to massless
states. However, they can be applied here by interpreting
the scalar masses, in the sense of dimensional reduction,
as extra-dimensional momentum components. While we
have not included coupling constants, these are easily
restored at the end of the calculation by including an
overall factor of (8πG)3, where G is Newton’s constant.
In terms of the spinor-helicity conventions of Ref. [20],

the independent tree-level gauge-theory amplitudes

needed in Eq. (1) are

A4(1
s, 2+, 3+, 4s) = i

m2
1 [2 3]

⟨2 3⟩ t12
,

A4(1
s, 2+, 3−, 4s) = i

⟨3| 1 |2]2

t23 t12
,

A4(1
−, 2−, 3+, 4+) = i

⟨1 2⟩4

⟨1 2⟩ ⟨2 3⟩ ⟨3 4⟩ ⟨4 1⟩ ,

A4(1
−, 2+, 3−, 4+) = i

⟨1 3⟩4

⟨1 2⟩ ⟨2 3⟩ ⟨3 4⟩ ⟨4 1⟩ , (3)

where tij = 2pi · pj and the ± denote gluon helicities.
The dilaton and antisymmetric tensor states are re-

moved from unitarity cuts by correlating the gluon helic-
ities on both sides of the double copy. The unwanted
states correspond to one gluon in the double copy of
positive helicity and the other of negative helicity. An
internal graviton state is obtained by taking the corre-
sponding gluons in the KLT formula in Eq. (2) to be of
the same helicity.
Using spinor evaluation techniques, it is straightfor-

ward to obtain a compact expression for the iterated two-
particle cut in Eq. (1) (e.g. see Ref. [25]). Imposing cuts
on the matter lines, as indicated in the first unitarity cut
of Fig. 1, further simplifies it and gives CH-cut. We find

CH-cut = 2i

[
1

(p5 − p8)2
+

1

(p5 + p7)2

]

×
[
s223m

4
1m

4
2 +

1

s623

∑

i=1,2

(
E4
i +O4

i + 6O2
i E2

i

)]
, (4)

where we have defined

E2
1 =

1

4
s223(t18t25 − t12t58)

2, O2
1 = E2

1 −m2
1m

2
2s

2
23t

2
58,

E2
2 =

1

4
s223(t17t25 − t12t57 − s23(t17 + t57))

2,

O2
2 = E2

2 −m2
1m

2
2s

2
23t

2
57. (5)

The simplicity of this expression is a reflection of the
double-copy structure: the same building blocks appear
in the simpler corresponding gauge-theory cut.
The spurious double-pole in s23 can be explicitly can-

celled by adding terms proportional to the Gram determi-
nant formed from the five independent momenta at two
loops which vanishes inD = 4. In fact, the expression de-
rived from the D-dimensional approach is automatically
free of such spurious singularities. While these Gram
determinants contribute quantum mechanically, we have
checked explicitly that they vanish in the classical limit.
This is not accidental—such terms are of the wrong form
to generate the required log(s23) needed to contribute to
the classical 3PM amplitude (see Ref. [24] for details).
The remaining two independent generalized unitarity

cuts in Fig. 2 are more complicated because they re-
quire five-point tree amplitudes with two massive scalar
legs. The four-dimensional input gauge-theory ampli-
tudes are simple to compute using modern methods

e.g. H Cut in D=4
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FIG. 1. Unitarity cuts needed for the classical scattering am-
plitude. The shaded ovals represent tree amplitudes while the
exposed lines depict on-shell states. The wiggly and straight
lines denote gravitons and massive scalars, respectively.

explicitly the completeness of our second method, where
we work in strictly D = 4 so as to benefit from very
simple expressions for gauge-theory amplitudes in terms
of spinor helicity [19] variables. We then build the two
corresponding gravitational amplitudes via the KLT re-
lations [16]. At two loops, both approaches are efficient,
but at higher loops, helicity amplitudes offer a much more
compact starting point.
For concreteness, consider the first generalized unitar-

ity cut in Fig. 1, which we refer to as CH-cut and is com-
prised of products of four three-point and one four-point
amplitudes. Since four-point tree amplitudes are already
very simple there is little computational advantage to
imposing the on-shell conditions on matter lines. Thus,
we replace the pairs of three-point amplitudes at the top
and bottom of the cut with four-point amplitudes and
then impose the matter cut conditions at the end. The
resulting iterated two-particle cut is then

C2,2 =
∑

states

M4(2
s,−8, 7, 3s)M4(−5, 6,−7, 8)

×M4(1
s, 5,−6, 4s), (1)

where M4 denotes the tree-level four-point amplitude for
gravity minimally coupled to two massive scalars denoted
here by legs 1s, 2s, 3s, 4s. In this cut, legs 1s, 4s have
mass m1 while legs 2s, 3s have mass m2. All momenta in
each tree amplitude are taken to be outgoing. The sum
runs over graviton states for legs 5, 6, 7, 8, where the
minus signs on the labels indicate reversed momenta.
The four-point gravity tree amplitudes needed in the

cuts are obtained from gauge-theory ones via the field-
theory limit of KLT relations [16],

M4(1, 2, 3, 4) = −is12A4(1, 2, 3, 4)A4(1, 2, 4, 3), (2)

where the A4 are tree-level color-ordered gauge-theory
four-point amplitudes and sij = (pi + pj)2, working
in mostly minus metric signature throughout. Strictly
speaking, the KLT relations apply only to massless
states. However, they can be applied here by interpreting
the scalar masses, in the sense of dimensional reduction,
as extra-dimensional momentum components. While we
have not included coupling constants, these are easily
restored at the end of the calculation by including an
overall factor of (8πG)3, where G is Newton’s constant.
In terms of the spinor-helicity conventions of Ref. [20],

the independent tree-level gauge-theory amplitudes

needed in Eq. (1) are

A4(1
s, 2+, 3+, 4s) = i

m2
1 [2 3]

⟨2 3⟩ t12
,

A4(1
s, 2+, 3−, 4s) = i

⟨3| 1 |2]2

t23 t12
,

A4(1
−, 2−, 3+, 4+) = i

⟨1 2⟩4

⟨1 2⟩ ⟨2 3⟩ ⟨3 4⟩ ⟨4 1⟩ ,

A4(1
−, 2+, 3−, 4+) = i

⟨1 3⟩4

⟨1 2⟩ ⟨2 3⟩ ⟨3 4⟩ ⟨4 1⟩ , (3)

where tij = 2pi · pj and the ± denote gluon helicities.
The dilaton and antisymmetric tensor states are re-

moved from unitarity cuts by correlating the gluon helic-
ities on both sides of the double copy. The unwanted
states correspond to one gluon in the double copy of
positive helicity and the other of negative helicity. An
internal graviton state is obtained by taking the corre-
sponding gluons in the KLT formula in Eq. (2) to be of
the same helicity.
Using spinor evaluation techniques, it is straightfor-

ward to obtain a compact expression for the iterated two-
particle cut in Eq. (1) (e.g. see Ref. [25]). Imposing cuts
on the matter lines, as indicated in the first unitarity cut
of Fig. 1, further simplifies it and gives CH-cut. We find

CH-cut = 2i

[
1

(p5 − p8)2
+

1

(p5 + p7)2

]

×
[
s223m

4
1m

4
2 +

1

s623

∑

i=1,2

(
E4
i +O4

i + 6O2
i E2

i

)]
, (4)

where we have defined

E2
1 =

1

4
s223(t18t25 − t12t58)

2, O2
1 = E2

1 −m2
1m

2
2s

2
23t

2
58,

E2
2 =

1

4
s223(t17t25 − t12t57 − s23(t17 + t57))

2,

O2
2 = E2

2 −m2
1m

2
2s

2
23t

2
57. (5)

The simplicity of this expression is a reflection of the
double-copy structure: the same building blocks appear
in the simpler corresponding gauge-theory cut.
The spurious double-pole in s23 can be explicitly can-

celled by adding terms proportional to the Gram determi-
nant formed from the five independent momenta at two
loops which vanishes inD = 4. In fact, the expression de-
rived from the D-dimensional approach is automatically
free of such spurious singularities. While these Gram
determinants contribute quantum mechanically, we have
checked explicitly that they vanish in the classical limit.
This is not accidental—such terms are of the wrong form
to generate the required log(s23) needed to contribute to
the classical 3PM amplitude (see Ref. [24] for details).
The remaining two independent generalized unitarity

cuts in Fig. 2 are more complicated because they re-
quire five-point tree amplitudes with two massive scalar
legs. The four-dimensional input gauge-theory ampli-
tudes are simple to compute using modern methods

3

FIG. 2. The eight independent diagrams showing the propa-
gator structure of integrals from which the classical contribu-
tions are extracted.

(e.g. see Ref. [26]). For our D construction we obtain
a BCJ representation, allowing us to express the gravity
cuts directly in terms of local diagrams. The particular
representation was chosen such that we can ignore the ref-
erence momenta when projecting the internal states into
gravitons. Further details will be given elsewhere [24].
To facilitate integration, we merge the cuts into a sin-

gle integrand whose cuts match those in Fig. 1. This is
achieved using an ansatz in terms of eight independent
diagrams with only cubic vertices displayed in Fig. 2. The
diagrammatic numerators are polynomials of the appro-
priate dimension exhibiting the symmetries of the corre-
sponding diagram. Their coefficients are then fixed via
the method of maximal cuts [27], whereby cuts of the in-
tegrand are constrained to match the known ones. This
approach is sufficient for the two-loop problem.
Integration. Our method of integration follows Ref. [21].
For convenience, we give a short summary here, leaving
details to Ref. [24]. Terms in the integrand take the form,

I =
numerator

graviton propagators
×
∏

i

1

ω2
i − k2

i −m2
i

, (6)

where i labels each matter line, which has energy ωi,
spatial momentum ki, and mass mi. The matter prop-
agators can be factored into particle and antiparticle
poles, ωi ±

√
k2
i +m2

i . We then express the integrand
as I = N ×

∏
i

1
zi
, i.e. in terms of the particle poles

zi = ωi−
√
k2
i +m2

i and an effective numerator N which
absorbs the rest of the integrand.
Following the procedure outlined in Ref. [21], we first

evaluate the energy integrals. At two loops, i.e. 3PM
order, we integrate over two independent combinations
of energies, ω and ω′, in the potential region. As we will

prove in detail in Ref. [24], the result is

Ĩ =

∫
dω

2π

dω′

2π
I(ω,ω′) =

∑

(i,j)

Sij Res
ωij ,ω

′

ij

I(ω,ω′), (7)

where the sum runs over distinct pairings (i, j) of matter
poles and zi = zj = 0 when (ω,ω′) = (ωij ,ω′

ij). Here Sij

is a calculable symmetry factor whose sign and magni-
tude depend on the topology of the cut graph. Note that
the residue for an (i, j) pairing will vanish if there are no
values of ω and ω′ for which zi = zj = 0.

The resulting quantity Ĩ depends on two independent
spatial loop momenta. To integrate over them we em-
ploy dimensional regularization to deal with ultraviolet
divergences stemming from the renormalization of delta
function contact interactions which do not contribute
classically. Due to the localization on energy residues,
Ĩ is a complicated, non-polynomial function of three-
dimensional invariants involving square roots. Neverthe-
less, we can series expand Ĩ in large m1,2, yielding poly-
nomials of kinematic invariants which we can integrate
at each order. After expanding, nearly all the spatial
integrals are simple bubbles for which there are known
analytic expressions [28]. The remaining integrals are
evaluated via integration-by-parts identities [29].
For diagrams free from infrared (IR) singularities gen-

erated by iterations of lower-loop graviton exchanges, we
have checked that our integrated results accord with sev-
eral standard methods in the Feynman integral litera-
ture, including the Mellin-Barnes representation [28, 30],
numerical integration via sector decomposition [31], and
differential equations [32] derived through integration-by-
parts reduction [29, 33]. Since the classical contribution
comes from certain residues on matter poles, the system
of differential equations omits integrals without support
on such residues.
Amplitude and potential. We apply the integration pro-
cedure outlined above order by order in the large-mass
expansion, i.e. in powers of velocity. Combining an ex-
plicit evaluation of the 3PM amplitude up to 7PN order
with information on the pole structure of individual in-
tegrals and exact, manifestly relativistic analytic results
for certain graph topologies, we conjecture a full, all or-
ders in velocity expression for the 3PM amplitude (whose
uniqueness will be discussed in Ref. [24]):

M3 =
πG3ν2m4 log q2

6γ2ξ

[
3− 6ν + 206νσ − 54σ2 + 108νσ2 + 4νσ3 −

48ν
(
3 + 12σ2 − 4σ4

)
arcsinh

√
σ−1
2√

σ2 − 1

−
18νγ

(
1− 2σ2

) (
1− 5σ2

)

(1 + γ) (1 + σ)

]
+

8π3G3ν4m6

γ4ξ

[
3γ

(
1− 2σ2

) (
1− 5σ2

)
F1 − 32m2ν2

(
1− 2σ2

)3
F2

]
,

(8)

where the log scale dependence is absorbed into a delta- function ultraviolet counterterm. Here we use center-of-
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2

Here
R
k1···kn

=
R

d3k1
(2⇡)3 · · · d3kn

(2⇡)3 and the Feynman vertex

V (k,k0) is the potential in the center of mass frame.

Classical Limit. The above EFT is obtained from the
full theory by integrating out massless force carriers me-
diating near-instantaneous interactions and taking the
NR limit, |k|, |k0| ⌧ mA,B . By definition, these potential
modes have energies parametrically less than their mo-
menta, so |k

0

�k0
0

| ⌧ |k�k0|.1 For a classical system, the
NR particles are separated by a distance |r| ⇠ 1/|k�k0|
that is parametrically larger than the Compton wave-
lengths of the particles, |k|, |k0|. The resulting hierarchy,
|k � k0| ⌧ |k|, |k0|, corresponds to an expansion in large
angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling

J�1 / k � k0 / �1, (3)

where k,k0 / 1 + J�1. The first relation holds because
angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0|2 / J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2 �k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
also be traded for k2 and k02 via the equations of motion.
We thus choose a field basis in which V only depends on
k2 + k02 and |k � k0|, so [4]

V (k,k0) =


|k � k0|2 (c
1

+ c
2

|k � k0|+ · · · ) , (4)

where we have only included terms which are classical
and thus scale as J3 in accordance with Eq. (3), and

the ellipsis denotes terms higher order in .2 ci
⇣

k2
+k02

2

⌘

are momentum-dependent functions characterizing con-
tributions at ith order in the coupling constant and all
orders in velocity. Here we make the usual assumption
that there is a convergent velocity expansion.

Amplitudes. From Eq. (1) and Eq. (2) it is straightfor-

1 While it may seem peculiar to integrate out massless states, the
potential modes are o↵-shell. Moreover, the EFT contains ultra-
soft modes with energy and momenta of order |k�k0| but these
encode dissipative e↵ects irrelevant to the conservative potential.

2 Higher order classical terms odd in  include factors of log |k�k0|.

ward to obtain the Feynman rules,

(k
0

,k) =
i

k
0

�
q

k2 +m2

A,B + i0
,

k k0

-k0-k

= �iV (k,k0) ,

(5)

where from here on the +i0 prescription will be implicit.
We are interested in the scattering amplitude for a pro-

cess where p and p0 are the incoming and outgoing three-
momenta in the center of mass frame, and EA and EB

are the energies of the incoming particles,

EA,B =
q
p2 +m2

A,B =
q
p02 +m2

A,B . (6)

We define the total energy and the reduced energy ratio,

E = EA + EB and ⇠ =
EAEB

(EA + EB)2
. (7)

Note that 0  ⇠  1/4 and moreover ⇠ and E are de-
pendent variables since EA and EB are related through
Eq. (6). We also define the momentum transfer q =
p� p0 / J�1, with classical scaling dictated by Eq. (3).
The EFT amplitude can either be organized in terms

of the  expansion or in terms of loop orders, so

M
EFT

=
1X

i=1

M (i)
EFT

=
1X

L=0

ML-loop

EFT

, (8)

where M (i)
EFT

is at ith order in  and arises from Feynman
diagrams at i� 1 loops and below.

Since pair creation of matter particles is kinematically
forbidden in the NR limit, the amplitude at L loops is
comprised purely of iterated bubbles, so

ML-loop

EFT

= · · ·
p

-p

k
1

-k
1

kL

-kL

p0

-p0

. (9)

For convenience, we merge each pair of matter lines into
an e↵ective “two-body propagator”,

�(k) = i

Z
dk

0

2⇡

1

k
0

�p
k2 +m2

A

1

E � k
0

�p
k2 +m2

B

=
1

E �p
k2 +m2

A �p
k2 +m2

B

,

(10)
where the second line is obtained by closing the contour
in k

0

either upwards or downwards in the complex plane.
The contribution at L loops is then

ML-loop

EFT

= �
Z

k1···kL

V (p,k
1

)�(k
1

) · · ·�(kL)V (kL,p
0)

= �
Z

k1···kL

NL-loop

EFT

X2

1

X2

2

· · ·X2

L+1

Y
1

Y
2

· · ·YL
,

(11)

= �iV (p, q)
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FIG. 2. The eight independent diagrams showing the propa-
gator structure of integrals from which the classical contribu-
tions are extracted.

(e.g. see Ref. [26]). For our D construction we obtain
a BCJ representation, allowing us to express the gravity
cuts directly in terms of local diagrams. The particular
representation was chosen such that we can ignore the ref-
erence momenta when projecting the internal states into
gravitons. Further details will be given elsewhere [24].
To facilitate integration, we merge the cuts into a sin-

gle integrand whose cuts match those in Fig. 1. This is
achieved using an ansatz in terms of eight independent
diagrams with only cubic vertices displayed in Fig. 2. The
diagrammatic numerators are polynomials of the appro-
priate dimension exhibiting the symmetries of the corre-
sponding diagram. Their coefficients are then fixed via
the method of maximal cuts [27], whereby cuts of the in-
tegrand are constrained to match the known ones. This
approach is sufficient for the two-loop problem.
Integration. Our method of integration follows Ref. [21].
For convenience, we give a short summary here, leaving
details to Ref. [24]. Terms in the integrand take the form,

I =
numerator

graviton propagators
×
∏

i

1

ω2
i − k2

i −m2
i

, (6)

where i labels each matter line, which has energy ωi,
spatial momentum ki, and mass mi. The matter prop-
agators can be factored into particle and antiparticle
poles, ωi ±

√
k2
i +m2

i . We then express the integrand
as I = N ×

∏
i

1
zi
, i.e. in terms of the particle poles

zi = ωi−
√
k2
i +m2

i and an effective numerator N which
absorbs the rest of the integrand.
Following the procedure outlined in Ref. [21], we first

evaluate the energy integrals. At two loops, i.e. 3PM
order, we integrate over two independent combinations
of energies, ω and ω′, in the potential region. As we will

prove in detail in Ref. [24], the result is

Ĩ =

∫
dω

2π

dω′

2π
I(ω,ω′) =

∑

(i,j)

Sij Res
ωij ,ω

′

ij

I(ω,ω′), (7)

where the sum runs over distinct pairings (i, j) of matter
poles and zi = zj = 0 when (ω,ω′) = (ωij ,ω′

ij). Here Sij

is a calculable symmetry factor whose sign and magni-
tude depend on the topology of the cut graph. Note that
the residue for an (i, j) pairing will vanish if there are no
values of ω and ω′ for which zi = zj = 0.

The resulting quantity Ĩ depends on two independent
spatial loop momenta. To integrate over them we em-
ploy dimensional regularization to deal with ultraviolet
divergences stemming from the renormalization of delta
function contact interactions which do not contribute
classically. Due to the localization on energy residues,
Ĩ is a complicated, non-polynomial function of three-
dimensional invariants involving square roots. Neverthe-
less, we can series expand Ĩ in large m1,2, yielding poly-
nomials of kinematic invariants which we can integrate
at each order. After expanding, nearly all the spatial
integrals are simple bubbles for which there are known
analytic expressions [28]. The remaining integrals are
evaluated via integration-by-parts identities [29].
For diagrams free from infrared (IR) singularities gen-

erated by iterations of lower-loop graviton exchanges, we
have checked that our integrated results accord with sev-
eral standard methods in the Feynman integral litera-
ture, including the Mellin-Barnes representation [28, 30],
numerical integration via sector decomposition [31], and
differential equations [32] derived through integration-by-
parts reduction [29, 33]. Since the classical contribution
comes from certain residues on matter poles, the system
of differential equations omits integrals without support
on such residues.
Amplitude and potential. We apply the integration pro-
cedure outlined above order by order in the large-mass
expansion, i.e. in powers of velocity. Combining an ex-
plicit evaluation of the 3PM amplitude up to 7PN order
with information on the pole structure of individual in-
tegrals and exact, manifestly relativistic analytic results
for certain graph topologies, we conjecture a full, all or-
ders in velocity expression for the 3PM amplitude (whose
uniqueness will be discussed in Ref. [24]):

M3 =
πG3ν2m4 log q2

6γ2ξ

[
3− 6ν + 206νσ − 54σ2 + 108νσ2 + 4νσ3 −

48ν
(
3 + 12σ2 − 4σ4

)
arcsinh

√
σ−1
2√

σ2 − 1

−
18νγ

(
1− 2σ2

) (
1− 5σ2

)

(1 + γ) (1 + σ)

]
+

8π3G3ν4m6

γ4ξ

[
3γ

(
1− 2σ2

) (
1− 5σ2

)
F1 − 32m2ν2

(
1− 2σ2

)3
F2

]
,

(8)

where the log scale dependence is absorbed into a delta- function ultraviolet counterterm. Here we use center-of-
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FIG. 2. The eight independent diagrams showing the propa-
gator structure of integrals from which the classical contribu-
tions are extracted.

(e.g. see Ref. [26]). For our D construction we obtain
a BCJ representation, allowing us to express the gravity
cuts directly in terms of local diagrams. The particular
representation was chosen such that we can ignore the ref-
erence momenta when projecting the internal states into
gravitons. Further details will be given elsewhere [24].
To facilitate integration, we merge the cuts into a sin-

gle integrand whose cuts match those in Fig. 1. This is
achieved using an ansatz in terms of eight independent
diagrams with only cubic vertices displayed in Fig. 2. The
diagrammatic numerators are polynomials of the appro-
priate dimension exhibiting the symmetries of the corre-
sponding diagram. Their coefficients are then fixed via
the method of maximal cuts [27], whereby cuts of the in-
tegrand are constrained to match the known ones. This
approach is sufficient for the two-loop problem.
Integration. Our method of integration follows Ref. [21].
For convenience, we give a short summary here, leaving
details to Ref. [24]. Terms in the integrand take the form,

I =
numerator

graviton propagators
×
∏

i

1

ω2
i − k2

i −m2
i

, (6)

where i labels each matter line, which has energy ωi,
spatial momentum ki, and mass mi. The matter prop-
agators can be factored into particle and antiparticle
poles, ωi ±

√
k2
i +m2

i . We then express the integrand
as I = N ×

∏
i

1
zi
, i.e. in terms of the particle poles

zi = ωi−
√
k2
i +m2

i and an effective numerator N which
absorbs the rest of the integrand.
Following the procedure outlined in Ref. [21], we first

evaluate the energy integrals. At two loops, i.e. 3PM
order, we integrate over two independent combinations
of energies, ω and ω′, in the potential region. As we will

prove in detail in Ref. [24], the result is

Ĩ =

∫
dω

2π

dω′

2π
I(ω,ω′) =

∑

(i,j)

Sij Res
ωij ,ω

′

ij

I(ω,ω′), (7)

where the sum runs over distinct pairings (i, j) of matter
poles and zi = zj = 0 when (ω,ω′) = (ωij ,ω′

ij). Here Sij

is a calculable symmetry factor whose sign and magni-
tude depend on the topology of the cut graph. Note that
the residue for an (i, j) pairing will vanish if there are no
values of ω and ω′ for which zi = zj = 0.

The resulting quantity Ĩ depends on two independent
spatial loop momenta. To integrate over them we em-
ploy dimensional regularization to deal with ultraviolet
divergences stemming from the renormalization of delta
function contact interactions which do not contribute
classically. Due to the localization on energy residues,
Ĩ is a complicated, non-polynomial function of three-
dimensional invariants involving square roots. Neverthe-
less, we can series expand Ĩ in large m1,2, yielding poly-
nomials of kinematic invariants which we can integrate
at each order. After expanding, nearly all the spatial
integrals are simple bubbles for which there are known
analytic expressions [28]. The remaining integrals are
evaluated via integration-by-parts identities [29].
For diagrams free from infrared (IR) singularities gen-

erated by iterations of lower-loop graviton exchanges, we
have checked that our integrated results accord with sev-
eral standard methods in the Feynman integral litera-
ture, including the Mellin-Barnes representation [28, 30],
numerical integration via sector decomposition [31], and
differential equations [32] derived through integration-by-
parts reduction [29, 33]. Since the classical contribution
comes from certain residues on matter poles, the system
of differential equations omits integrals without support
on such residues.
Amplitude and potential. We apply the integration pro-
cedure outlined above order by order in the large-mass
expansion, i.e. in powers of velocity. Combining an ex-
plicit evaluation of the 3PM amplitude up to 7PN order
with information on the pole structure of individual in-
tegrals and exact, manifestly relativistic analytic results
for certain graph topologies, we conjecture a full, all or-
ders in velocity expression for the 3PM amplitude (whose
uniqueness will be discussed in Ref. [24]):

M3 =
πG3ν2m4 log q2
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where the log scale dependence is absorbed into a delta- function ultraviolet counterterm. Here we use center-of-
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graviton momenta

6.1 General Procedure

We have chosen a very mechanical path towards integration, with the aim of having a method
that can be extended to arbitrary loop orders. The procedure we present here constitutes the core
strategy, and has been tested at two loop. While it should also apply for a generic class of topologies
at arbitrary loop, there may be new topologies at higher loop that will require some modification
of our method such as the use of additional IBP reductions.

We consider a general multi-loop integral characterizing the scattering of matter fields through
graviton exchange:

I =
C

nLŸ

i=1

⁄ dD≠1¸i

(2fi)D≠1

DC
nLŸ

i=1

⁄ dÊi

2fi

D

I =
C

nLŸ

i=1

⁄ dD≠1¸i

(2fi)D≠1

D
ÂI, (91)

where i runs over nL loop momenta ¸i = (Êi, ¸i) and we have split the integration over the energy
and three-momentum components. For convenience, we will typically choose the ¸i to be a subset
of the momenta flowing through internal graviton lines. We use dimensional regularization for the
spatial directions. The above equation defines our notation for the full integrand I and the spatial
integrand ÂI = rnL

i=1

s dÊi
2fi

I. [add more discussion - we will use parallel notation]
The process of integration has three key steps which we now discuss broadly. The detailed

mechanics will be illustrated with examples in Secs. (?? - ??) below.

Step 1: Determine the E�ective Numerator

The integrand takes the general form [energy and momentum notation]

I =
C

nMŸ

i=1

1
Á2

i ≠ k2

i ≠ m2

i

DC
nGŸ

j=1

1
Ê2

j ≠ ¸2

j

D

N (92)

I =
C

nMŸ

i=1

1
E2

i ≠ k2

i ≠ m2

i

DC
nGŸ

j=1

1
Ê2

j ≠ ¸2

j

D

N (93)

where i runs over nM internal scalar field lines whose energy, momentum, and mass are Ei, ki, and
mi, and j runs over nG internal graviton lines whose energy and momentum are Êj and ¸j. Of course,
these energies and momenta are not independent. All kinematic parameters depend implicitly on
the external masses m

1

and m
2

, external momenta p and pÕ, as well as nL independent loop energies
and momenta. The choice of loop variables are arbitrary, but we will often find it convenient to
choose a subset of nL graviton energies and momenta, Êi and ¸i.

We can further factorize the scalar propagators into the matter and antimatter poles,
1

E2

i ≠ k2

i ≠ m2

i

= 1
Ei +

Ò
k2

i + m2

i

1
Ei ≠

Ò
k2

i + m2

i

. (94)

Matter poles are positive energy poles and correspond to low energy degrees of freedom present in
the scattering process we are interested in. On the other hand, antimatter poles are negative energy
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Note that the integral I“ is not actually the full scalar triangle integral, but rather the leading
classical contribution arising from potential gravitons.

6.2.2 Box Diagram

The next simplest example is the box diagram, defined as an arbitrary numerator over one „
1

propagator, one „
2

propagator, and two graviton propagators, as shown in Fig. ??. Since the
numerator is arbitrary, this example has as a subcase the triangle diagram. The box integrand is

I⇤ = 1
(E

1

+ Ê)2 ≠ (p + ¸)2 ≠ m2

1

1
(E

2

≠ Ê)2 ≠ (p + ¸)2 ≠ m2

2

1
Ê2 ≠ ¸2

1
Ê2 ≠ (¸ + q)2

N⇤. (114)

As before, we splitting the „
1

and „
2

propagators into matter and antimatter components, yielding
Eq. (103) together with the analogous formula

1
(E

2

≠ Ê)2 ≠ (p + ¸)2 ≠ m2

2

= 1
(Ê ≠ ÊP2)(Ê ≠ ÊA2) , ÊP2 , ÊA2 = E

2

û
Ò

E2

2

+ 2p¸ + ¸2 .

(115)
The spatial integrand is then given in terms of the e�ective numerator by

ÂI⇤ =
⁄ dÊ

2fi

ÊN⇤(Ê)
(Ê ≠ ÊP1)(Ê ≠ ÊP2) , ÊN⇤(Ê) = 1

Ê ≠ ÊA1

1
Ê ≠ ÊA2

1
Ê2 ≠ ¸2

1
Ê2 ≠ (¸ + q)2

N⇤(Ê).

(116)
Next, we apply energy integral reduction to recast the integrand in terms of a set of master

energy integrals. Since simultaneously eliminating both poles in ÂI⇤ produces a scaleless integral,
the general constraint in Eq. (98) for this example is given by

(Ê ≠ ÊP1)(Ê ≠ ÊP2) æ 0 . (117)

Note that eliminating a single pole gives the triangle case discussed previously. [dispel confusion
here.] The constraint in Eq. (117) e�ectively defines a zero locus for a certain quadratic polynomial
in Ê. Obviously, any function of Ê can be reduced down to a linear function of Ê simply by repeated
application of Eq. (117). Thus an arbitrary numerator can be reduced to the form

ÊN⇤(Ê) æ linear function of Ê. (118)

Next, let us imagine further expanding this linear function about the point ÊP1 , so there is a
term proportional to Ê≠ÊP1 and a remainder term. The former will cancel exactly one of the matter
poles, yielding an expression exactly of the form of the triangle diagram tackled in the previous
section. Meanwhile, the latter is a genuinely new ingredient since it does not cancel any of the
matter poles. This contribution yields a new master energy integral,

⁄ dÊ

(Ê ≠ ÊP1 + i‘)(Ê ≠ ÊP2 ≠ i‘) = 1
2

⁄ A
dÊ

(Ê ≠ ÊP1 + i‘)(Ê ≠ ÊP2 ≠ i‘) + {Ê ¡ ≠Ê}
B

= ≠ 1
ÊP1 ≠ ÊP2

◊ 2fii.

(119)
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In the first line we have symmetrized over routings of the energy integral and in the second line we
have evaluated the integral directly. Obviously, we could have chosen to expand about the point
ÊP2 instead, in which case the various integrals needed will slightly change but the final answer will
not. [Discuss i e]

The important feature of Eq. (119) is that it introduces a new kind of singularity coming from
the (ÊP2 ≠ ÊP1) denominator factor. In the nonrelativistic limit, this pole becomes

1
ÊP1 ≠ ÊP2

= 2m
1

m
2

m
1

+ m
2

1
2p¸ + ¸2

+ · · · (120)

which is singular when the internal „
1

and „
2

particles are on-shell. This implies that the spatial
box integrand includes terms of the form of Eq. (99) with “ = 1. As noted previously, we choose not
to evaluate those quantities explicitly since they are guaranteed to subtract exactly with matching
contributions from the EFT amplitude.

As an example, consider the scalar box integral, for which N⇤ = 1. Applying the procedure
described above, we obtain the spatial integrand,

ÂI⇤ = i

2E¸2(¸ + q)2(¸2 + 2p¸) + i(2› ≠ 1) (¸2(¸ + q)2 ≠ (¸2 + (¸ + q)2)(¸2 + 2p¸))
16E3›2¸4(¸ + q)4

+ i(1 ≠ 4› + 2›2) [(¸4 + ¸2(¸ + q)2 + (¸ + q)4)(¸2 + 2p¸) ≠ 3¸2(¸ + q)2(¸2 + (¸ + q)2)] (¸2 + 2p¸)2

64E5›4¸6(¸ + q)6

+ · · · .
(121)

[Use X, Y here?] To obtain this result we have performed two expansions. First, we expanded
in the classical or large J limit using the scalings ¸ ≥ (¸ + q) ≥ (¸2 + 2p¸) ≥ J≠1. Second, we
expanded in the nonrelativistic limit, but kept existing energy factors intact (otherwise we would
resum terms into resummation would simply re the same factors). [fix] Applying the formula in
Eq. (100), we obtain

I⇤ =
⁄ dD≠1¸

(2fi)D≠1

i

2E¸2(¸ + q)2(¸2 + 2p¸) . (122)

The classical terms in Eq. (121) vanish by direct integration. We have checked this explicitly to
O(v50). Moreover, a general proof of this can be constructed by demanding that di�erent choices
in energy integral reduction yield the same result. This remaining integral is infrared divergent and
has “superclassical" scaling ≥ J≠4. We will leave this integral unevaluated since it will simply cancel
with the same infrared artifact appearing in the e�ective theory contribution to the matching.
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3

FIG. 2. The eight independent diagrams showing the propa-
gator structure of integrals from which the classical contribu-
tions are extracted.

(e.g. see Ref. [26]). For our D construction we obtain
a BCJ representation, allowing us to express the gravity
cuts directly in terms of local diagrams. The particular
representation was chosen such that we can ignore the ref-
erence momenta when projecting the internal states into
gravitons. Further details will be given elsewhere [24].
To facilitate integration, we merge the cuts into a sin-

gle integrand whose cuts match those in Fig. 1. This is
achieved using an ansatz in terms of eight independent
diagrams with only cubic vertices displayed in Fig. 2. The
diagrammatic numerators are polynomials of the appro-
priate dimension exhibiting the symmetries of the corre-
sponding diagram. Their coefficients are then fixed via
the method of maximal cuts [27], whereby cuts of the in-
tegrand are constrained to match the known ones. This
approach is sufficient for the two-loop problem.
Integration. Our method of integration follows Ref. [21].
For convenience, we give a short summary here, leaving
details to Ref. [24]. Terms in the integrand take the form,

I =
numerator

graviton propagators
×
∏

i

1

ω2
i − k2

i −m2
i

, (6)

where i labels each matter line, which has energy ωi,
spatial momentum ki, and mass mi. The matter prop-
agators can be factored into particle and antiparticle
poles, ωi ±

√
k2
i +m2

i . We then express the integrand
as I = N ×

∏
i

1
zi
, i.e. in terms of the particle poles

zi = ωi−
√
k2
i +m2

i and an effective numerator N which
absorbs the rest of the integrand.
Following the procedure outlined in Ref. [21], we first

evaluate the energy integrals. At two loops, i.e. 3PM
order, we integrate over two independent combinations
of energies, ω and ω′, in the potential region. As we will

prove in detail in Ref. [24], the result is

Ĩ =

∫
dω

2π

dω′

2π
I(ω,ω′) =

∑

(i,j)

Sij Res
ωij ,ω

′

ij

I(ω,ω′), (7)

where the sum runs over distinct pairings (i, j) of matter
poles and zi = zj = 0 when (ω,ω′) = (ωij ,ω′

ij). Here Sij

is a calculable symmetry factor whose sign and magni-
tude depend on the topology of the cut graph. Note that
the residue for an (i, j) pairing will vanish if there are no
values of ω and ω′ for which zi = zj = 0.

The resulting quantity Ĩ depends on two independent
spatial loop momenta. To integrate over them we em-
ploy dimensional regularization to deal with ultraviolet
divergences stemming from the renormalization of delta
function contact interactions which do not contribute
classically. Due to the localization on energy residues,
Ĩ is a complicated, non-polynomial function of three-
dimensional invariants involving square roots. Neverthe-
less, we can series expand Ĩ in large m1,2, yielding poly-
nomials of kinematic invariants which we can integrate
at each order. After expanding, nearly all the spatial
integrals are simple bubbles for which there are known
analytic expressions [28]. The remaining integrals are
evaluated via integration-by-parts identities [29].
For diagrams free from infrared (IR) singularities gen-

erated by iterations of lower-loop graviton exchanges, we
have checked that our integrated results accord with sev-
eral standard methods in the Feynman integral litera-
ture, including the Mellin-Barnes representation [28, 30],
numerical integration via sector decomposition [31], and
differential equations [32] derived through integration-by-
parts reduction [29, 33]. Since the classical contribution
comes from certain residues on matter poles, the system
of differential equations omits integrals without support
on such residues.
Amplitude and potential. We apply the integration pro-
cedure outlined above order by order in the large-mass
expansion, i.e. in powers of velocity. Combining an ex-
plicit evaluation of the 3PM amplitude up to 7PN order
with information on the pole structure of individual in-
tegrals and exact, manifestly relativistic analytic results
for certain graph topologies, we conjecture a full, all or-
ders in velocity expression for the 3PM amplitude (whose
uniqueness will be discussed in Ref. [24]):

M3 =
πG3ν2m4 log q2

6γ2ξ

[
3− 6ν + 206νσ − 54σ2 + 108νσ2 + 4νσ3 −

48ν
(
3 + 12σ2 − 4σ4

)
arcsinh

√
σ−1
2√

σ2 − 1

−
18νγ

(
1− 2σ2

) (
1− 5σ2

)

(1 + γ) (1 + σ)

]
+

8π3G3ν4m6

γ4ξ

[
3γ

(
1− 2σ2

) (
1− 5σ2

)
F1 − 32m2ν2

(
1− 2σ2

)3
F2

]
,

(8)

where the log scale dependence is absorbed into a delta- function ultraviolet counterterm. Here we use center-of-
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FIG. 2. The eight independent diagrams showing the propa-
gator structure of integrals from which the classical contribu-
tions are extracted.

(e.g. see Ref. [26]). For our D construction we obtain
a BCJ representation, allowing us to express the gravity
cuts directly in terms of local diagrams. The particular
representation was chosen such that we can ignore the ref-
erence momenta when projecting the internal states into
gravitons. Further details will be given elsewhere [24].
To facilitate integration, we merge the cuts into a sin-

gle integrand whose cuts match those in Fig. 1. This is
achieved using an ansatz in terms of eight independent
diagrams with only cubic vertices displayed in Fig. 2. The
diagrammatic numerators are polynomials of the appro-
priate dimension exhibiting the symmetries of the corre-
sponding diagram. Their coefficients are then fixed via
the method of maximal cuts [27], whereby cuts of the in-
tegrand are constrained to match the known ones. This
approach is sufficient for the two-loop problem.
Integration. Our method of integration follows Ref. [21].
For convenience, we give a short summary here, leaving
details to Ref. [24]. Terms in the integrand take the form,

I =
numerator

graviton propagators
×
∏
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1

ω2
i − k2
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, (6)

where i labels each matter line, which has energy ωi,
spatial momentum ki, and mass mi. The matter prop-
agators can be factored into particle and antiparticle
poles, ωi ±

√
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i . We then express the integrand
as I = N ×
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, i.e. in terms of the particle poles
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i and an effective numerator N which
absorbs the rest of the integrand.
Following the procedure outlined in Ref. [21], we first

evaluate the energy integrals. At two loops, i.e. 3PM
order, we integrate over two independent combinations
of energies, ω and ω′, in the potential region. As we will

prove in detail in Ref. [24], the result is
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where the sum runs over distinct pairings (i, j) of matter
poles and zi = zj = 0 when (ω,ω′) = (ωij ,ω′

ij). Here Sij

is a calculable symmetry factor whose sign and magni-
tude depend on the topology of the cut graph. Note that
the residue for an (i, j) pairing will vanish if there are no
values of ω and ω′ for which zi = zj = 0.

The resulting quantity Ĩ depends on two independent
spatial loop momenta. To integrate over them we em-
ploy dimensional regularization to deal with ultraviolet
divergences stemming from the renormalization of delta
function contact interactions which do not contribute
classically. Due to the localization on energy residues,
Ĩ is a complicated, non-polynomial function of three-
dimensional invariants involving square roots. Neverthe-
less, we can series expand Ĩ in large m1,2, yielding poly-
nomials of kinematic invariants which we can integrate
at each order. After expanding, nearly all the spatial
integrals are simple bubbles for which there are known
analytic expressions [28]. The remaining integrals are
evaluated via integration-by-parts identities [29].
For diagrams free from infrared (IR) singularities gen-

erated by iterations of lower-loop graviton exchanges, we
have checked that our integrated results accord with sev-
eral standard methods in the Feynman integral litera-
ture, including the Mellin-Barnes representation [28, 30],
numerical integration via sector decomposition [31], and
differential equations [32] derived through integration-by-
parts reduction [29, 33]. Since the classical contribution
comes from certain residues on matter poles, the system
of differential equations omits integrals without support
on such residues.
Amplitude and potential. We apply the integration pro-
cedure outlined above order by order in the large-mass
expansion, i.e. in powers of velocity. Combining an ex-
plicit evaluation of the 3PM amplitude up to 7PN order
with information on the pole structure of individual in-
tegrals and exact, manifestly relativistic analytic results
for certain graph topologies, we conjecture a full, all or-
ders in velocity expression for the 3PM amplitude (whose
uniqueness will be discussed in Ref. [24]):

M3 =
πG3ν2m4 log q2

6γ2ξ

[
3− 6ν + 206νσ − 54σ2 + 108νσ2 + 4νσ3 −

48ν
(
3 + 12σ2 − 4σ4

)
arcsinh

√
σ−1
2√

σ2 − 1

−
18νγ

(
1− 2σ2

) (
1− 5σ2

)

(1 + γ) (1 + σ)

]
+

8π3G3ν4m6

γ4ξ

[
3γ

(
1− 2σ2

) (
1− 5σ2

)
F1 − 32m2ν2

(
1− 2σ2

)3
F2

]
,

(8)

where the log scale dependence is absorbed into a delta- function ultraviolet counterterm. Here we use center-of-
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where for emphasis we have made explicit all dependence on Ê.
Second we use energy integral reduction to evaluate the energy integral. From Eq. (104), we

see that any numerator term which cancels the Ê ≠ ÊP1 pole leads to a scaleless bubble. Thus the
general constraint in Eq. (98) for this example is given by

Ê ≠ ÊP1 æ 0. (105)

Applying this replacement is of course equivalent to sending

ÊN“(Ê) æ ÊN“(ÊP1). (106)

The spatial integrand then takes the form

ÂI“ = ÊN“(ÊP )
⁄ dÊ

2fi

1
Ê ≠ ÊP1

. (107)

The energy integral has no more energy dependence in the numerator, and is identified as a master
energy integral.

This master energy integral can be computed in many ways which will be instructive when we
eventually encounter more complicated objects. The first option is simply direct evaluation:

⁄ dÊ

Ê ≠ ÊP1 + i‘
= lim

RæŒ

R⁄

≠R

dÊ

Ê ≠ ÊP1 + i‘
= 1

2 ◊ (≠2fii), (108)

where on the left hand side we have simply reintroduced the appropriate i‘ factors which come
from the original propagators. We have expressed our answer in terms of a 1/2 symmetry factor
multiplying the quantity one would naively extract from computing the residue on the matter pole
including signs. The sign in front of the i‘ designates whether positive Ê increases or decreases the
energy of the matter corresponding to this pole. Here we have simply regulated the integration
domain in order to evaluate the integral.

A second approach is to compute the master energy integral via residues. At one loop there
is a single integration variable and the analysis is straightforward [? ]. This is not the case for
multivariable integration. Pushing the contour of integration into the upper half complex plane, we
pick up the residue at Ê = ÊP1 ≠ i‘ as well as the contribution from the upper half arc at infinity.
Pushing the contour down, there are no residues to pick up but we include the contribution from the
lower half arc at infinity. Averaging over the two equivalent prescriptions, the half arc contributions
cancel and we are again left with the 1/2 symmetry factor relative to the residue on the matter
pole.

The last approach will be our standard method of choice, since it scales nicely to higher loop.
The idea is to recast the integral as

⁄ dÊ

Ê ≠ ÊP1 + i‘
= 1

2

⁄ A
dÊ

Ê ≠ ÊP1 + i‘
+ dÊ

≠Ê ≠ ÊP1 + i‘

B

= 1
2 ◊ (≠2fii). (109)
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including signs. The sign in front of the i‘ designates whether positive Ê increases or decreases the
energy of the matter corresponding to this pole. Here we have simply regulated the integration
domain in order to evaluate the integral.

A second approach is to compute the master energy integral via residues. At one loop there
is a single integration variable and the analysis is straightforward [? ]. This is not the case for
multivariable integration. Pushing the contour of integration into the upper half complex plane, we
pick up the residue at Ê = ÊP1 ≠ i‘ as well as the contribution from the upper half arc at infinity.
Pushing the contour down, there are no residues to pick up but we include the contribution from the
lower half arc at infinity. Averaging over the two equivalent prescriptions, the half arc contributions
cancel and we are again left with the 1/2 symmetry factor relative to the residue on the matter
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In the first line we have symmetrized over routings of the energy integral and in the second line we
have evaluated the integral directly. Obviously, we could have chosen to expand about the point
ÊP2 instead, in which case the various integrals needed will slightly change but the final answer will
not. [Discuss i e]

The important feature of Eq. (119) is that it introduces a new kind of singularity coming from
the (ÊP2 ≠ ÊP1) denominator factor. In the nonrelativistic limit, this pole becomes

1
ÊP1 ≠ ÊP2

= 2m
1

m
2

m
1

+ m
2

1
2p¸ + ¸2

+ · · · (120)

which is singular when the internal „
1

and „
2

particles are on-shell. This implies that the spatial
box integrand includes terms of the form of Eq. (99) with “ = 1. As noted previously, we choose not
to evaluate those quantities explicitly since they are guaranteed to subtract exactly with matching
contributions from the EFT amplitude.

As an example, consider the scalar box integral, for which N⇤ = 1. Applying the procedure
described above, we obtain the spatial integrand,

ÂI⇤ = i

2E¸2(¸ + q)2(¸2 + 2p¸) + i(2› ≠ 1) (¸2(¸ + q)2 ≠ (¸2 + (¸ + q)2)(¸2 + 2p¸))
16E3›2¸4(¸ + q)4

+ i(1 ≠ 4› + 2›2) [(¸4 + ¸2(¸ + q)2 + (¸ + q)4)(¸2 + 2p¸) ≠ 3¸2(¸ + q)2(¸2 + (¸ + q)2)] (¸2 + 2p¸)2

64E5›4¸6(¸ + q)6

+ · · · .
(121)

[Use X, Y here?] To obtain this result we have performed two expansions. First, we expanded
in the classical or large J limit using the scalings ¸ ≥ (¸ + q) ≥ (¸2 + 2p¸) ≥ J≠1. Second, we
expanded in the nonrelativistic limit, but kept existing energy factors intact (otherwise we would
resum terms into resummation would simply re the same factors). [fix] Applying the formula in
Eq. (100), we obtain

I⇤ =
⁄ dD≠1¸

(2fi)D≠1

i

2E¸2(¸ + q)2(¸2 + 2p¸) . (122)

The classical terms in Eq. (121) vanish by direct integration. We have checked this explicitly to
O(v50). Moreover, a general proof of this can be constructed by demanding that di�erent choices
in energy integral reduction yield the same result. This remaining integral is infrared divergent and
has “superclassical" scaling ≥ J≠4. We will leave this integral unevaluated since it will simply cancel
with the same infrared artifact appearing in the e�ective theory contribution to the matching.
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However, many of the integrals naively diverge due to contributions from poles at infinity. As we
will see, by averaging over routings of the loop momenta, we obtain finite answers which incorporate
various computable symmetry factors. A similar approach is discussed in [? ].

All of our examples in Sec. ?? will employ this method of energy integral reduction. However,
there is a second simpler approach we dub the “residue method”. In this case, we evaluate the
integral as a sum over residues on the matter poles. The residues are reweighted by various symmetry
factors that can be derived systematically and are actually equal to the corresponding master energy
integrals encountered in energy integral reduction. We present the details of the residue method in
Sec. ??.

Step 3: Momentum Loop Integration

Our last step is to perform the three-momentum integration. The spatial integrand ÂI is a quite
complicated nonanalytic function of the loop momenta. Its functional form involves square roots
coming from the evaluation of the energy integrals. Direct evaluation of these integrals is likely very
di�cult. Our approach is instead to expand I in the nonrelativistic limit, e.g., in |p| π m

1

, m
2

,
up to some order. As we will see, each term in the series is a simple rational function of the loop
momenta, and in fact, the form of these objects is identical to those which appear in NRGR.

Upon expansion, every one-loop integral which appears can be evaluated using the same me-
chanical procedure, and remarkably, applying this procedure sequentially is su�cient for evaluating
all two-loop integrals. This integration method exploits the fact that all spatial integrands we
encounter—in some cases after straightforward integration by parts (IBP) reduction—can be writ-
ten in the form

ÂI =
ÿ

–

ÿ

—

ÿ

“

f (–—“)(¸)
[¸2]–[(¸ + w)2]—[2z¸ + ¸2]“ , (99)

where ¸ is one of the loop momenta and w and z denote vectors built from other loop momenta or
the external momenta. Here – and — can take on fractional powers but “ is one or zero. The function
f (–—“) is a polynomial in momenta. The ¸2 and (¸ + w)2 poles are generated by combinations of
internal graviton propagators while the 2z¸ + ¸2 poles arise from internal matter propagators.

To begin, we check whether there exists a loop momentum ¸ such that Eq. (99) holds with
“ = 0. This arises whenever a diagram contains a triangle subdiagram. In this case we trivially
evaluate these integrals using the following analytic formula for an arbitrary tensor numerator [? ],
[This formula has a lot of room for error!]

⁄ dD≠1¸

(2fi)D≠1

¸µ1¸µ2 · · · ¸µn

[¸2]–[(¸ + w)2]— = 1
(2fi)D≠1

ifi
D≠1

2 (≠1)n+

D≠1
2

[w2]–+—≠ D≠1
2

Ân/2Êÿ

m=0

A(–, —; n, m)
C

w2

2

Dm Ó
[”]m[w]n≠2m

Ôµ1µ2···µn
,

(100)
where the quantity in curly brackets denotes a fully symmetric tensor built from m powers of the
spatial metric, i.e. the (D ≠ 1)-dimensional Kronecker delta function, and n ≠ 2m powers of w.
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IR artifacts: 

3

FIG. 2. The eight independent diagrams showing the propa-
gator structure of integrals from which the classical contribu-
tions are extracted.

(e.g. see Ref. [26]). For our D construction we obtain
a BCJ representation, allowing us to express the gravity
cuts directly in terms of local diagrams. The particular
representation was chosen such that we can ignore the ref-
erence momenta when projecting the internal states into
gravitons. Further details will be given elsewhere [24].

To facilitate integration, we merge the cuts into a sin-
gle integrand whose cuts match those in Fig. 1. This is
achieved using an ansatz in terms of eight independent
diagrams with only cubic vertices displayed in Fig. 2. The
diagrammatic numerators are polynomials of the appro-
priate dimension exhibiting the symmetries of the corre-
sponding diagram. Their coe�cients are then fixed via
the method of maximal cuts [27], whereby cuts of the in-
tegrand are constrained to match the known ones. This
approach is su�cient for the two-loop problem.

Integration. Our method of integration follows Ref. [21].
For convenience, we give a short summary here, leaving
details to Ref. [24]. Terms in the integrand take the form,

I =
numerator

graviton propagators
⇥

Y

i

1

!2
i � k2

i �m2
i

, (6)

where i labels each matter line, which has energy !i,
spatial momentum ki, and mass mi. The matter prop-
agators can be factored into particle and antiparticle
poles, !i ±

p
k2
i +m2

i . We then express the integrand
as I = N ⇥ Q

i
1
zi
, i.e. in terms of the particle poles

zi = !i�
p

k2
i +m2

i and an e↵ective numerator N which
absorbs the rest of the integrand.

Following the procedure outlined in Ref. [21], we first
evaluate the energy integrals. At two loops, i.e. 3PM
order, we integrate over two independent combinations

of energies, ! and !0, in the potential region. As we will
prove in detail in Ref. [24], the result is

eI =

Z
d!

2⇡

d!0

2⇡
I(!,!0) =

X

(i,j)

Sij Res
!ij ,!0

ij

I(!,!0), (7)

where the sum runs over distinct pairings (i, j) of matter
poles and zi = zj = 0 when (!,!0) = (!ij ,!

0
ij). Here Sij

is a calculable symmetry factor whose sign and magni-
tude depend on the topology of the cut graph. Note that
the residue for an (i, j) pairing will vanish if there are no
values of ! and !0 for which zi = zj = 0.

The resulting quantity eI depends on two independent
spatial loop momenta. To integrate over them we em-
ploy dimensional regularization to deal with ultraviolet
divergences stemming from the renormalization of delta
function contact interactions which do not contribute
classically. Due to the localization on energy residues,
eI is a complicated, non-polynomial function of three-
dimensional invariants involving square roots. Neverthe-
less, we can series expand eI in large m1,2, yielding poly-
nomials of kinematic invariants which we can integrate
at each order. After expanding, nearly all the spatial
integrals are simple bubbles for which there are known
analytic expressions [28]. The remaining integrals are
evaluated via integration-by-parts identities [29].
For diagrams free from infrared (IR) singularities gen-

erated by iterations of lower-loop graviton exchanges, we
have checked that our integrated results accord with sev-
eral standard methods in the Feynman integral litera-
ture, including the Mellin-Barnes representation [28, 30],
numerical integration via sector decomposition [31], and
di↵erential equations [32] derived through integration-by-
parts reduction [29, 33]. Since the classical contribution
comes from certain residues on matter poles, the system
of di↵erential equations omits integrals without support
on such residues.
Amplitude and potential. We apply the integration pro-
cedure outlined above order by order in the large-mass
expansion, i.e. in powers of velocity. Combining an ex-
plicit evaluation of the 3PM amplitude up to 7PN order
with information on the pole structure of individual in-
tegrals and exact, manifestly relativistic analytic results
for certain graph topologies, we conjecture a full, all or-
ders in velocity expression for the 3PM amplitude (whose
uniqueness will be discussed in Ref. [24]):

M3 =
⇡G3⌫2m4 log q2

6�2⇠


3� 6⌫ + 206⌫� � 54�2 + 108⌫�2 + 4⌫�3 �

48⌫
�
3 + 12�2 � 4�4

�
arcsinh

q
��1
2p

�2 � 1

� 18⌫�
�
1� 2�2

� �
1� 5�2

�

(1 + �) (1 + �)

�
+

8⇡3G3⌫4m6

�4⇠


3�

�
1� 2�2

� �
1� 5�2

�
F1 � 32m2⌫2

�
1� 2�2

�3
F2

�
,

(8)

where the log scale dependence is absorbed into a delta- function ultraviolet counterterm. Here we use center-of-

2’ residue method

!16

3
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4
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spatial integration

However, many of the integrals naively diverge due to contributions from poles at infinity. As we
will see, by averaging over routings of the loop momenta, we obtain finite answers which incorporate
various computable symmetry factors. A similar approach is discussed in [? ].

All of our examples in Sec. ?? will employ this method of energy integral reduction. However,
there is a second simpler approach we dub the “residue method”. In this case, we evaluate the
integral as a sum over residues on the matter poles. The residues are reweighted by various symmetry
factors that can be derived systematically and are actually equal to the corresponding master energy
integrals encountered in energy integral reduction. We present the details of the residue method in
Sec. ??.

Step 3: Momentum Loop Integration

Our last step is to perform the three-momentum integration. The spatial integrand ÂI is a quite
complicated nonanalytic function of the loop momenta. Its functional form involves square roots
coming from the evaluation of the energy integrals. Direct evaluation of these integrals is likely very
di�cult. Our approach is instead to expand I in the nonrelativistic limit, e.g., in |p| π m

1

, m
2

,
up to some order. As we will see, each term in the series is a simple rational function of the loop
momenta, and in fact, the form of these objects is identical to those which appear in NRGR.

Upon expansion, every one-loop integral which appears can be evaluated using the same me-
chanical procedure, and remarkably, applying this procedure sequentially is su�cient for evaluating
all two-loop integrals. This integration method exploits the fact that all spatial integrands we
encounter—in some cases after straightforward integration by parts (IBP) reduction—can be writ-
ten in the form

ÂI =
ÿ

–

ÿ

—

ÿ

“

f (–—“)(¸)
[¸2]–[(¸ + w)2]—[2z¸ + ¸2]“ , (99)

where ¸ is one of the loop momenta and w and z denote vectors built from other loop momenta or
the external momenta. Here – and — can take on fractional powers but “ is one or zero. The function
f (–—“) is a polynomial in momenta. The ¸2 and (¸ + w)2 poles are generated by combinations of
internal graviton propagators while the 2z¸ + ¸2 poles arise from internal matter propagators.

To begin, we check whether there exists a loop momentum ¸ such that Eq. (99) holds with
“ = 0. This arises whenever a diagram contains a triangle subdiagram. In this case we trivially
evaluate these integrals using the following analytic formula for an arbitrary tensor numerator [? ],
[This formula has a lot of room for error!]

⁄ dD≠1¸

(2fi)D≠1

¸µ1¸µ2 · · · ¸µn

[¸2]–[(¸ + w)2]— = 1
(2fi)D≠1

ifi
D≠1

2 (≠1)n+

D≠1
2

[w2]–+—≠ D≠1
2

Ân/2Êÿ

m=0

A(–, —; n, m)
C

w2

2

Dm Ó
[”]m[w]n≠2m

Ôµ1µ2···µn
,

(100)
where the quantity in curly brackets denotes a fully symmetric tensor built from m powers of the
spatial metric, i.e. the (D ≠ 1)-dimensional Kronecker delta function, and n ≠ 2m powers of w.
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FIG. 2. The eight independent diagrams showing the propa-
gator structure of integrals from which the classical contribu-
tions are extracted.

(e.g. see Ref. [26]). For our D construction we obtain
a BCJ representation, allowing us to express the gravity
cuts directly in terms of local diagrams. The particular
representation was chosen such that we can ignore the ref-
erence momenta when projecting the internal states into
gravitons. Further details will be given elsewhere [24].
To facilitate integration, we merge the cuts into a sin-

gle integrand whose cuts match those in Fig. 1. This is
achieved using an ansatz in terms of eight independent
diagrams with only cubic vertices displayed in Fig. 2. The
diagrammatic numerators are polynomials of the appro-
priate dimension exhibiting the symmetries of the corre-
sponding diagram. Their coefficients are then fixed via
the method of maximal cuts [27], whereby cuts of the in-
tegrand are constrained to match the known ones. This
approach is sufficient for the two-loop problem.
Integration. Our method of integration follows Ref. [21].
For convenience, we give a short summary here, leaving
details to Ref. [24]. Terms in the integrand take the form,

I =
numerator

graviton propagators
×
∏

i

1

ω2
i − k2

i −m2
i

, (6)

where i labels each matter line, which has energy ωi,
spatial momentum ki, and mass mi. The matter prop-
agators can be factored into particle and antiparticle
poles, ωi ±

√
k2
i +m2

i . We then express the integrand
as I = N ×

∏
i

1
zi
, i.e. in terms of the particle poles

zi = ωi−
√
k2
i +m2

i and an effective numerator N which
absorbs the rest of the integrand.
Following the procedure outlined in Ref. [21], we first

evaluate the energy integrals. At two loops, i.e. 3PM
order, we integrate over two independent combinations
of energies, ω and ω′, in the potential region. As we will

prove in detail in Ref. [24], the result is

Ĩ =

∫
dω

2π

dω′

2π
I(ω,ω′) =

∑

(i,j)

Sij Res
ωij ,ω

′

ij

I(ω,ω′), (7)

where the sum runs over distinct pairings (i, j) of matter
poles and zi = zj = 0 when (ω,ω′) = (ωij ,ω′

ij). Here Sij

is a calculable symmetry factor whose sign and magni-
tude depend on the topology of the cut graph. Note that
the residue for an (i, j) pairing will vanish if there are no
values of ω and ω′ for which zi = zj = 0.

The resulting quantity Ĩ depends on two independent
spatial loop momenta. To integrate over them we em-
ploy dimensional regularization to deal with ultraviolet
divergences stemming from the renormalization of delta
function contact interactions which do not contribute
classically. Due to the localization on energy residues,
Ĩ is a complicated, non-polynomial function of three-
dimensional invariants involving square roots. Neverthe-
less, we can series expand Ĩ in large m1,2, yielding poly-
nomials of kinematic invariants which we can integrate
at each order. After expanding, nearly all the spatial
integrals are simple bubbles for which there are known
analytic expressions [28]. The remaining integrals are
evaluated via integration-by-parts identities [29].
For diagrams free from infrared (IR) singularities gen-

erated by iterations of lower-loop graviton exchanges, we
have checked that our integrated results accord with sev-
eral standard methods in the Feynman integral litera-
ture, including the Mellin-Barnes representation [28, 30],
numerical integration via sector decomposition [31], and
differential equations [32] derived through integration-by-
parts reduction [29, 33]. Since the classical contribution
comes from certain residues on matter poles, the system
of differential equations omits integrals without support
on such residues.
Amplitude and potential. We apply the integration pro-
cedure outlined above order by order in the large-mass
expansion, i.e. in powers of velocity. Combining an ex-
plicit evaluation of the 3PM amplitude up to 7PN order
with information on the pole structure of individual in-
tegrals and exact, manifestly relativistic analytic results
for certain graph topologies, we conjecture a full, all or-
ders in velocity expression for the 3PM amplitude (whose
uniqueness will be discussed in Ref. [24]):

M3 =
πG3ν2m4 log q2
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)
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(8)

where the log scale dependence is absorbed into a delta- function ultraviolet counterterm. Here we use center-of-
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FIG. 2. The eight independent diagrams showing the propa-
gator structure of integrals from which the classical contribu-
tions are extracted.

(e.g. see Ref. [27]). For our D construction we obtain
a BCJ representation, allowing us to express the gravity
cuts directly in terms of local diagrams. The particular
representation was chosen such that we can ignore the ref-
erence momenta when projecting the internal states into
gravitons. Further details will be given elsewhere [25].

To facilitate integration, we merge the cuts into a sin-
gle integrand whose cuts match those in Fig. 1. This is
achieved using an ansatz in terms of eight independent
diagrams with only cubic vertices displayed in Fig. 2. The
diagrammatic numerators are polynomials of the appro-
priate dimension exhibiting the symmetries of the corre-
sponding diagram. Their coefficients are then fixed via
the method of maximal cuts [28], whereby cuts of the in-
tegrand are constrained to match the known ones. This
approach is sufficient for the two-loop problem.

Integration. Our method of integration follows Ref. [22].
For convenience, we give a short summary here, leaving
details to Ref. [25]. Terms in the integrand take the form,

I =
numerator

graviton propagators
×

∏

i

1

ω2
i − k2

i −m2
i

, (6)

where i labels each matter line, which has energy ωi,
spatial momentum ki, and mass mi. The matter prop-
agators can be factored into particle and antiparticle
poles, ωi ±

√
k2
i +m2

i . We then express the integrand
as I = N ×

∏
i

1
zi
, i.e. in terms of the particle poles

zi = ωi−
√
k2
i +m2

i and an effective numerator N which
absorbs the rest of the integrand.

Following the procedure outlined in Ref. [22], we first
evaluate the energy integrals. At two loops, i.e. 3PM
order, we integrate over two independent combinations

of energies, ω and ω′, in the potential region. As we will
prove in detail in Ref. [25], the result is

Ĩ =

∫
dω

2π

dω′

2π
I(ω,ω′) =

∑

(i,j)

Sij Res
ωij ,ω

′

ij

I(ω,ω′), (7)

where the sum runs over distinct pairings (i, j) of matter
poles and zi = zj = 0 when (ω,ω′) = (ωij ,ω′

ij). Here Sij

is a calculable symmetry factor whose sign and magni-
tude depend on the topology of the cut graph. Note that
the residue for an (i, j) pairing will vanish if there are no
values of ω and ω′ for which zi = zj = 0.

The resulting quantity Ĩ depends on two independent
spatial loop momenta. To integrate over them we em-
ploy dimensional regularization to deal with ultraviolet
divergences stemming from the renormalization of delta
function contact interactions which do not contribute
classically. Due to the localization on energy residues,
Ĩ is a complicated, non-polynomial function of three-
dimensional invariants involving square roots. Neverthe-
less, we can series expand Ĩ in large m1,2, yielding poly-
nomials of kinematic invariants which we can integrate
at each order. After expanding, nearly all the spatial
integrals are simple bubbles for which there are known
analytic expressions [29]. The remaining integrals are
evaluated via integration-by-parts identities [30].

For diagrams free from infrared (IR) singularities gen-
erated by iterations of lower-loop graviton exchanges, we
have checked that our integrated results accord with sev-
eral standard methods in the Feynman integral litera-
ture, including the Mellin-Barnes representation [29, 31],
numerical integration via sector decomposition [32], and
differential equations [33] derived through integration-by-
parts reduction [30, 34]. The system of differential equa-
tions omits integrals lacking support on the matter pole
residues that produce the classical contributions.
Amplitude and potential. The integration procedure out-
lined above yields the conservative, i.e. real component
of the 3PM amplitude generated by potential gravitons
order by order in the large-mass expansion. Combining
an explicit evaluation of this amplitude up to 7PN order
with knowledge of the pole structure of individual inte-
grals and exact, manifestly relativistic analytic results for
certain graph topologies, we conjecture a full, all orders
in velocity expression for the conservative 3PM ampli-
tude (whose uniqueness will be discussed in Ref. [25]):
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FIG. 2. The eight independent diagrams showing the propa-
gator structure of integrals from which the classical contribu-
tions are extracted.

(e.g. see Ref. [26]). For our D construction we obtain
a BCJ representation, allowing us to express the gravity
cuts directly in terms of local diagrams. The particular
representation was chosen such that we can ignore the ref-
erence momenta when projecting the internal states into
gravitons. Further details will be given elsewhere [24].
To facilitate integration, we merge the cuts into a sin-

gle integrand whose cuts match those in Fig. 1. This is
achieved using an ansatz in terms of eight independent
diagrams with only cubic vertices displayed in Fig. 2. The
diagrammatic numerators are polynomials of the appro-
priate dimension exhibiting the symmetries of the corre-
sponding diagram. Their coefficients are then fixed via
the method of maximal cuts [27], whereby cuts of the in-
tegrand are constrained to match the known ones. This
approach is sufficient for the two-loop problem.
Integration. Our method of integration follows Ref. [21].
For convenience, we give a short summary here, leaving
details to Ref. [24]. Terms in the integrand take the form,

I =
numerator

graviton propagators
×
∏

i

1

ω2
i − k2

i −m2
i

, (6)

where i labels each matter line, which has energy ωi,
spatial momentum ki, and mass mi. The matter prop-
agators can be factored into particle and antiparticle
poles, ωi ±

√
k2
i +m2

i . We then express the integrand
as I = N ×

∏
i

1
zi
, i.e. in terms of the particle poles

zi = ωi−
√
k2
i +m2

i and an effective numerator N which
absorbs the rest of the integrand.
Following the procedure outlined in Ref. [21], we first

evaluate the energy integrals. At two loops, i.e. 3PM
order, we integrate over two independent combinations
of energies, ω and ω′, in the potential region. As we will

prove in detail in Ref. [24], the result is

Ĩ =

∫
dω

2π

dω′

2π
I(ω,ω′) =

∑

(i,j)

Sij Res
ωij ,ω

′

ij

I(ω,ω′), (7)

where the sum runs over distinct pairings (i, j) of matter
poles and zi = zj = 0 when (ω,ω′) = (ωij ,ω′

ij). Here Sij

is a calculable symmetry factor whose sign and magni-
tude depend on the topology of the cut graph. Note that
the residue for an (i, j) pairing will vanish if there are no
values of ω and ω′ for which zi = zj = 0.

The resulting quantity Ĩ depends on two independent
spatial loop momenta. To integrate over them we em-
ploy dimensional regularization to deal with ultraviolet
divergences stemming from the renormalization of delta
function contact interactions which do not contribute
classically. Due to the localization on energy residues,
Ĩ is a complicated, non-polynomial function of three-
dimensional invariants involving square roots. Neverthe-
less, we can series expand Ĩ in large m1,2, yielding poly-
nomials of kinematic invariants which we can integrate
at each order. After expanding, nearly all the spatial
integrals are simple bubbles for which there are known
analytic expressions [28]. The remaining integrals are
evaluated via integration-by-parts identities [29].
For diagrams free from infrared (IR) singularities gen-

erated by iterations of lower-loop graviton exchanges, we
have checked that our integrated results accord with sev-
eral standard methods in the Feynman integral litera-
ture, including the Mellin-Barnes representation [28, 30],
numerical integration via sector decomposition [31], and
differential equations [32] derived through integration-by-
parts reduction [29, 33]. Since the classical contribution
comes from certain residues on matter poles, the system
of differential equations omits integrals without support
on such residues.
Amplitude and potential. We apply the integration pro-
cedure outlined above order by order in the large-mass
expansion, i.e. in powers of velocity. Combining an ex-
plicit evaluation of the 3PM amplitude up to 7PN order
with information on the pole structure of individual in-
tegrals and exact, manifestly relativistic analytic results
for certain graph topologies, we conjecture a full, all or-
ders in velocity expression for the 3PM amplitude (whose
uniqueness will be discussed in Ref. [24]):

M3 =
πG3ν2m4 log q2

6γ2ξ

[
3− 6ν + 206νσ − 54σ2 + 108νσ2 + 4νσ3 −
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(
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+
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,

(8)

where the log scale dependence is absorbed into a delta- function ultraviolet counterterm. Here we use center-of-
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Here
R
k1···kn

=
R

d3k1
(2⇡)3 · · · d3kn

(2⇡)3 and the Feynman vertex

V (k,k0) is the potential in the center of mass frame.

Classical Limit. The above EFT is obtained from the
full theory by integrating out massless force carriers me-
diating near-instantaneous interactions and taking the
NR limit, |k|, |k0| ⌧ mA,B . By definition, these potential
modes have energies parametrically less than their mo-
menta, so |k

0

�k0
0

| ⌧ |k�k0|.1 For a classical system, the
NR particles are separated by a distance |r| ⇠ 1/|k�k0|
that is parametrically larger than the Compton wave-
lengths of the particles, |k|, |k0|. The resulting hierarchy,
|k � k0| ⌧ |k|, |k0|, corresponds to an expansion in large
angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling

J�1 / k � k0 / �1, (3)

where k,k0 / 1 + J�1. The first relation holds because
angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0|2 / J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2 �k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
also be traded for k2 and k02 via the equations of motion.
We thus choose a field basis in which V only depends on
k2 + k02 and |k � k0|, so [4]

V (k,k0) =


|k � k0|2 (c
1

+ c
2

|k � k0|+ · · · ) , (4)

where we have only included terms which are classical
and thus scale as J3 in accordance with Eq. (3), and

the ellipsis denotes terms higher order in .2 ci
⇣

k2
+k02

2

⌘

are momentum-dependent functions characterizing con-
tributions at ith order in the coupling constant and all
orders in velocity. Here we make the usual assumption
that there is a convergent velocity expansion.

Amplitudes. From Eq. (1) and Eq. (2) it is straightfor-

1 While it may seem peculiar to integrate out massless states, the
potential modes are o↵-shell. Moreover, the EFT contains ultra-
soft modes with energy and momenta of order |k�k0| but these
encode dissipative e↵ects irrelevant to the conservative potential.

2 Higher order classical terms odd in  include factors of log |k�k0|.

ward to obtain the Feynman rules,
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k
0

�
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,

k k0

-k0-k

= �iV (k,k0) ,

(5)

where from here on the +i0 prescription will be implicit.
We are interested in the scattering amplitude for a pro-

cess where p and p0 are the incoming and outgoing three-
momenta in the center of mass frame, and EA and EB

are the energies of the incoming particles,

EA,B =
q
p2 +m2

A,B =
q
p02 +m2

A,B . (6)

We define the total energy and the reduced energy ratio,

E = EA + EB and ⇠ =
EAEB

(EA + EB)2
. (7)

Note that 0  ⇠  1/4 and moreover ⇠ and E are de-
pendent variables since EA and EB are related through
Eq. (6). We also define the momentum transfer q =
p� p0 / J�1, with classical scaling dictated by Eq. (3).
The EFT amplitude can either be organized in terms

of the  expansion or in terms of loop orders, so

M
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L=0

ML-loop
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, (8)

where M (i)
EFT

is at ith order in  and arises from Feynman
diagrams at i� 1 loops and below.

Since pair creation of matter particles is kinematically
forbidden in the NR limit, the amplitude at L loops is
comprised purely of iterated bubbles, so
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For convenience, we merge each pair of matter lines into
an e↵ective “two-body propagator”,
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where the second line is obtained by closing the contour
in k

0

either upwards or downwards in the complex plane.
The contribution at L loops is then
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V (k,k0) is the potential in the center of mass frame.

Classical Limit. The above EFT is obtained from the
full theory by integrating out massless force carriers me-
diating near-instantaneous interactions and taking the
NR limit, |k|, |k0| ⌧ mA,B . By definition, these potential
modes have energies parametrically less than their mo-
menta, so |k

0
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| ⌧ |k�k0|.1 For a classical system, the
NR particles are separated by a distance |r| ⇠ 1/|k�k0|
that is parametrically larger than the Compton wave-
lengths of the particles, |k|, |k0|. The resulting hierarchy,
|k � k0| ⌧ |k|, |k0|, corresponds to an expansion in large
angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling

J�1 / k � k0 / �1, (3)

where k,k0 / 1 + J�1. The first relation holds because
angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0|2 / J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2 �k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
also be traded for k2 and k02 via the equations of motion.
We thus choose a field basis in which V only depends on
k2 + k02 and |k � k0|, so [4]
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are momentum-dependent functions characterizing con-
tributions at ith order in the coupling constant and all
orders in velocity. Here we make the usual assumption
that there is a convergent velocity expansion.

Amplitudes. From Eq. (1) and Eq. (2) it is straightfor-

1 While it may seem peculiar to integrate out massless states, the
potential modes are o↵-shell. Moreover, the EFT contains ultra-
soft modes with energy and momenta of order |k�k0| but these
encode dissipative e↵ects irrelevant to the conservative potential.
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where from here on the +i0 prescription will be implicit.
We are interested in the scattering amplitude for a pro-

cess where p and p0 are the incoming and outgoing three-
momenta in the center of mass frame, and EA and EB

are the energies of the incoming particles,

EA,B =
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We define the total energy and the reduced energy ratio,

E = EA + EB and ⇠ =
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Note that 0  ⇠  1/4 and moreover ⇠ and E are de-
pendent variables since EA and EB are related through
Eq. (6). We also define the momentum transfer q =
p� p0 / J�1, with classical scaling dictated by Eq. (3).
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(2⇡)3 and the Feynman vertex

V (k,k0) is the potential in the center of mass frame.

Classical Limit. The above EFT is obtained from the
full theory by integrating out massless force carriers me-
diating near-instantaneous interactions and taking the
NR limit, |k|, |k0| ⌧ mA,B . By definition, these potential
modes have energies parametrically less than their mo-
menta, so |k

0

�k0
0

| ⌧ |k�k0|.1 For a classical system, the
NR particles are separated by a distance |r| ⇠ 1/|k�k0|
that is parametrically larger than the Compton wave-
lengths of the particles, |k|, |k0|. The resulting hierarchy,
|k � k0| ⌧ |k|, |k0|, corresponds to an expansion in large
angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling

J�1 / k � k0 / �1, (3)

where k,k0 / 1 + J�1. The first relation holds because
angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0|2 / J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2 �k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
also be traded for k2 and k02 via the equations of motion.
We thus choose a field basis in which V only depends on
k2 + k02 and |k � k0|, so [4]
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tributions at ith order in the coupling constant and all
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Amplitudes. From Eq. (1) and Eq. (2) it is straightfor-

1 While it may seem peculiar to integrate out massless states, the
potential modes are o↵-shell. Moreover, the EFT contains ultra-
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p� p0 / J�1, with classical scaling dictated by Eq. (3).
The EFT amplitude can either be organized in terms

of the  expansion or in terms of loop orders, so

M
EFT

=
1X

i=1

M (i)
EFT

=
1X

L=0

ML-loop

EFT

, (8)

where M (i)
EFT

is at ith order in  and arises from Feynman
diagrams at i� 1 loops and below.

Since pair creation of matter particles is kinematically
forbidden in the NR limit, the amplitude at L loops is
comprised purely of iterated bubbles, so

ML-loop

EFT

= · · ·
p

-p

k
1

-k
1

kL

-kL

p0

-p0

. (9)

For convenience, we merge each pair of matter lines into
an e↵ective “two-body propagator”,

�(k) = i

Z
dk

0

2⇡

1

k
0

�p
k2 +m2

A

1

E � k
0

�p
k2 +m2

B

=
1

E �p
k2 +m2

A �p
k2 +m2

B

,

(10)
where the second line is obtained by closing the contour
in k

0

either upwards or downwards in the complex plane.
The contribution at L loops is then

ML-loop

EFT

= �
Z

k1···kL

V (p,k
1

)�(k
1

) · · ·�(kL)V (kL,p
0)

= �
Z

k1···kL

NL-loop

EFT

X2

1

X2

2

· · ·X2

L+1

Y
1

Y
2

· · ·YL
,

(11)

2

Here
R
k1···kn

=
R

d3k1
(2⇡)3 · · · d3kn

(2⇡)3 and the Feynman vertex

V (k,k0) is the potential in the center of mass frame.

Classical Limit. The above EFT is obtained from the
full theory by integrating out massless force carriers me-
diating near-instantaneous interactions and taking the
NR limit, |k|, |k0| ⌧ mA,B . By definition, these potential
modes have energies parametrically less than their mo-
menta, so |k

0

�k0
0

| ⌧ |k�k0|.1 For a classical system, the
NR particles are separated by a distance |r| ⇠ 1/|k�k0|
that is parametrically larger than the Compton wave-
lengths of the particles, |k|, |k0|. The resulting hierarchy,
|k � k0| ⌧ |k|, |k0|, corresponds to an expansion in large
angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling

J�1 / k � k0 / �1, (3)

where k,k0 / 1 + J�1. The first relation holds because
angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0|2 / J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2 �k02 vanishes
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We combine tools from e↵ective field theory and generalized unitarity to construct a map between
on-shell scattering amplitudes and the classical potential for interacting spinless particles. For
general relativity, we obtain analytic expressions for the classical potential of a binary black hole
system at second order in the gravitational constant and all orders in velocity. Our results exactly
match all known results up to fourth post-Newtonian order, and o↵er a simple check of future higher
order calculations. By design, these methods should extend to higher orders in perturbation theory.

I. INTRODUCTION

The theory of scattering amplitudes has revealed
unique insights into the structure of quantum field theory
(QFT) and inspired powerful new tools for calculation.
While phenomenological applications have largely cen-
tered on high-energy colliders, an e↵ort has emerged to
connect the amplitudes program to the physics of gravita-
tional waves, which were recently discovered at LIGO [1].

Unfortunately, any attempt at bridging these subjects
is immediately confounded by the fact that a binary black
hole inspiral is quite dissimilar from black hole scatter-
ing. The latter is a transient interaction of widely sep-
arated black holes which are e↵ectively free before and
after the event. The former describes objects bound in
quasi-circular orbit by a classical conservative potential,
together with the dissipative radiation-reaction force in-
duced by gravitational wave emission.

There is a long history of mapping scattering observ-
ables to the classical gravitational potential, e.g. see
the seminal work of [2, 3] as well as more recent treat-
ments [4–11]. In this paper we unify ideas from e↵ective
field theory (EFT) and generalized unitarity to system-
atize this procedure for a general QFT of spinless parti-
cles [4, 5]. To begin, we construct an EFT for two non-
relativistic (NR) scalars which interact via the classical
potential V . Since the two-particle on-shell amplitudes
in the EFT and full theory are equal, i.e. M

EFT

= M , we
can determine V order by order in perturbation theory.

Of course, on-shell methods like generalized unitarity
vastly simplify amplitude calculations (see Refs. [12, 13]
and references therein). In this approach, M is expressed
not in terms of Feynman diagrams but rather as a sum
of scalar integrals weighted by scalar integral coe�cients
which are rational functions of the external momenta.

Our main results are summarized in Eq. (23), which re-
casts the coe�cients c of the classical potential in terms of
the scalar integral coe�cients d in a general QFT at lead-
ing and next-to-leading order in the interaction strength.
For general relativity (GR), we obtain Eqs. (26) and (27),
which are new analytic expressions for the potential at
second post-Minkowskian (2PM) order, i.e. atO(G2) and
at all orders in velocity. These equations are physically
equivalent to all state-of-the-art results, which extend to

fourth post-Newtonian (4PN) order [14–16]. Since our
results include information at all orders in the PN ex-
pansion, they may be useful for checking future higher
order calculations. The present work goes beyond pre-
vious calculations of the 2PM amplitude [5, 8, 11] by
deriving an explicit mapping to the 2PM potential.
This work introduces several new methods. First, we

show how calculations are drastically simplified when the
classical limit is taken at the earliest possible stage of the
computation. This is implemented by a simple power
counting scheme in large angular momentum J � 1,
together with a restriction on loop momenta to the so-
called potential region of kinematics. Copious quantum
mechanical contributions are thus truncated at the inte-
grand level while complicated four-dimensional integrals
are reduced to far simpler three-dimensional ones.
Second, we introduce the method of “integrand sub-

traction” to e↵ectively eliminate three-dimensional inte-
grals which can be quite complex due to infrared singu-
larities. In this approach, the di↵erence of the integrands
in the full theory and EFT are similar to those encoun-
tered in NR GR [17, 18] and easily integrate to purely
rational functions of the external kinematics.
Third, we show how gauge-dependent quantities like

the classical potential can be compared by computing
gauge-invariant on-shell scattering amplitudes without
the need for constructing explicit coordinate transforma-
tions or wrangling with equations of motion ambiguities.

II. EFFECTIVE FIELD THEORY

Definition. An EFT for NR scalar fields A and B is
described by the action S =

R
dt (L

kin

+ L
int

), where

L
kin

=

Z

k
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✓
i@t �

q
k2 +m2

A

◆
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+

Z

k
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k2 +m2

B

◆
B(k) ,

(1)

is the kinetic term and the interaction term is [4]

L
int

= �
Z

k,k0
V (k,k0)A†(k0)A(k)B†(�k0)B(�k) .

(2)

L =
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Lkin
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

2

Here
R
k1···kn

=
R

d3k1
(2⇡)3 · · · d3kn

(2⇡)3 and the Feynman vertex

V (k,k0) is the potential in the center of mass frame.

Classical Limit. The above EFT is obtained from the
full theory by integrating out massless force carriers me-
diating near-instantaneous interactions and taking the
NR limit, |k|, |k0| ⌧ mA,B . By definition, these potential
modes have energies parametrically less than their mo-
menta, so |k
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| ⌧ |k�k0|.1 For a classical system, the
NR particles are separated by a distance |r| ⇠ 1/|k�k0|
that is parametrically larger than the Compton wave-
lengths of the particles, |k|, |k0|. The resulting hierarchy,
|k � k0| ⌧ |k|, |k0|, corresponds to an expansion in large
angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling

J�1 / k � k0 / �1, (3)

where k,k0 / 1 + J�1. The first relation holds because
angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0|2 / J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2 �k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
also be traded for k2 and k02 via the equations of motion.
We thus choose a field basis in which V only depends on
k2 + k02 and |k � k0|, so [4]
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where we have only included terms which are classical
and thus scale as J3 in accordance with Eq. (3), and
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are momentum-dependent functions characterizing con-
tributions at ith order in the coupling constant and all
orders in velocity. Here we make the usual assumption
that there is a convergent velocity expansion.

Amplitudes. From Eq. (1) and Eq. (2) it is straightfor-

1 While it may seem peculiar to integrate out massless states, the
potential modes are o↵-shell. Moreover, the EFT contains ultra-
soft modes with energy and momenta of order |k�k0| but these
encode dissipative e↵ects irrelevant to the conservative potential.

2 Higher order classical terms odd in  include factors of log |k�k0|.
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(2⇡)3 and the Feynman vertex

V (k,k0) is the potential in the center of mass frame.

Classical Limit. The above EFT is obtained from the
full theory by integrating out massless force carriers me-
diating near-instantaneous interactions and taking the
NR limit, |k|, |k0| ⌧ mA,B . By definition, these potential
modes have energies parametrically less than their mo-
menta, so |k
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| ⌧ |k�k0|.1 For a classical system, the
NR particles are separated by a distance |r| ⇠ 1/|k�k0|
that is parametrically larger than the Compton wave-
lengths of the particles, |k|, |k0|. The resulting hierarchy,
|k � k0| ⌧ |k|, |k0|, corresponds to an expansion in large
angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling

J�1 / k � k0 / �1, (3)

where k,k0 / 1 + J�1. The first relation holds because
angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0|2 / J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2 �k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
also be traded for k2 and k02 via the equations of motion.
We thus choose a field basis in which V only depends on
k2 + k02 and |k � k0|, so [4]
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1

+ c
2

|k � k0|+ · · · ) , (4)
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tributions at ith order in the coupling constant and all
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Amplitudes. From Eq. (1) and Eq. (2) it is straightfor-

1 While it may seem peculiar to integrate out massless states, the
potential modes are o↵-shell. Moreover, the EFT contains ultra-
soft modes with energy and momenta of order |k�k0| but these
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Effective Theory Amplitude

* Note IR artifacts and subtractions.

where k
0

= p and kL+1

= pÕ are the incoming and outgoing momenta in the center of mass frame,
and the loop momenta for internal matter lines are ki for i = 1 to L. We can simplify this integral
by expanding the integrand in the classical limit or large J limit (see Sec. (??) for a discussion of
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The poles k2

i ≠ p2 come from the expansion of the two-body propagators � in Eq. (185), while the
poles |ki ≠ ki+1

|2 come from the expansion of the vertices V in Eq. (185). The numerator N L-loop

EFT

is a regular function of these poles which may cancel factors in the denominator.
Note that by changing integration variables the integral in Eq. (186) is of the general type

treated in Sec. (??). [Need to explicitly go to the ¸ basis. ] In particular, for any one of
the loop momenta, the form is that of Eq. (??) with “ Æ 1 and –, — Æ 2. Therefore, as described
in Sec. (??), all triangle subdiagrams are evaluated sequentially, while box subdiagrams are left
unevaluated since they are infrared artifacts that will simply cancel in the matching between full
theory and e�ective theory. We illustrate this in more detail in Sec. (??) below.
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(187)

[all the l’s above are not ¸’s] where E = E
1

+ E
2

is the total energy and › = E
1

E
2

/E2 is the
symmetric energy ratio. The dependence of the functions cn on p2 is kept implicit, while cÕ

n and
cÕÕ

n denote first and second derivatives with respect to p2. The remaining unevaluated integrals are
infrared divergent. The structure of these amplitudes are further discussed in the next section in
the context of matching.

It is straighforward to extend these results to higher orders in the PM expansion. Note however
that our construction here includes only the conservative sector of the e�ective theory as su�cient
for extracting the classical conservative potential at 3PM order. For describing dissipative dynamics
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(2⇡)3 and the Feynman vertex

V (k,k0) is the potential in the center of mass frame.

Classical Limit. The above EFT is obtained from the
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diating near-instantaneous interactions and taking the
NR limit, |k|, |k0| ⌧ mA,B . By definition, these potential
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lengths of the particles, |k|, |k0|. The resulting hierarchy,
|k � k0| ⌧ |k|, |k0|, corresponds to an expansion in large
angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling

J�1 / k � k0 / �1, (3)

where k,k0 / 1 + J�1. The first relation holds because
angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0|2 / J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2 �k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
also be traded for k2 and k02 via the equations of motion.
We thus choose a field basis in which V only depends on
k2 + k02 and |k � k0|, so [4]

V (k,k0) =
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where we have only included terms which are classical
and thus scale as J3 in accordance with Eq. (3), and
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are momentum-dependent functions characterizing con-
tributions at ith order in the coupling constant and all
orders in velocity. Here we make the usual assumption
that there is a convergent velocity expansion.

Amplitudes. From Eq. (1) and Eq. (2) it is straightfor-

1 While it may seem peculiar to integrate out massless states, the
potential modes are o↵-shell. Moreover, the EFT contains ultra-
soft modes with energy and momenta of order |k�k0| but these
encode dissipative e↵ects irrelevant to the conservative potential.

2 Higher order classical terms odd in  include factors of log |k�k0|.
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where from here on the +i0 prescription will be implicit.
We are interested in the scattering amplitude for a pro-

cess where p and p0 are the incoming and outgoing three-
momenta in the center of mass frame, and EA and EB

are the energies of the incoming particles,
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We define the total energy and the reduced energy ratio,

E = EA + EB and ⇠ =
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Note that 0  ⇠  1/4 and moreover ⇠ and E are de-
pendent variables since EA and EB are related through
Eq. (6). We also define the momentum transfer q =
p� p0 / J�1, with classical scaling dictated by Eq. (3).
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(2⇡)3 and the Feynman vertex

V (k,k0) is the potential in the center of mass frame.

Classical Limit. The above EFT is obtained from the
full theory by integrating out massless force carriers me-
diating near-instantaneous interactions and taking the
NR limit, |k|, |k0| ⌧ mA,B . By definition, these potential
modes have energies parametrically less than their mo-
menta, so |k

0
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| ⌧ |k�k0|.1 For a classical system, the
NR particles are separated by a distance |r| ⇠ 1/|k�k0|
that is parametrically larger than the Compton wave-
lengths of the particles, |k|, |k0|. The resulting hierarchy,
|k � k0| ⌧ |k|, |k0|, corresponds to an expansion in large
angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling

J�1 / k � k0 / �1, (3)

where k,k0 / 1 + J�1. The first relation holds because
angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0|2 / J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2 �k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
also be traded for k2 and k02 via the equations of motion.
We thus choose a field basis in which V only depends on
k2 + k02 and |k � k0|, so [4]
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and thus scale as J3 in accordance with Eq. (3), and
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are momentum-dependent functions characterizing con-
tributions at ith order in the coupling constant and all
orders in velocity. Here we make the usual assumption
that there is a convergent velocity expansion.

Amplitudes. From Eq. (1) and Eq. (2) it is straightfor-

1 While it may seem peculiar to integrate out massless states, the
potential modes are o↵-shell. Moreover, the EFT contains ultra-
soft modes with energy and momenta of order |k�k0| but these
encode dissipative e↵ects irrelevant to the conservative potential.

2 Higher order classical terms odd in  include factors of log |k�k0|.
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where from here on the +i0 prescription will be implicit.
We are interested in the scattering amplitude for a pro-

cess where p and p0 are the incoming and outgoing three-
momenta in the center of mass frame, and EA and EB

are the energies of the incoming particles,
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We define the total energy and the reduced energy ratio,

E = EA + EB and ⇠ =
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Note that 0  ⇠  1/4 and moreover ⇠ and E are de-
pendent variables since EA and EB are related through
Eq. (6). We also define the momentum transfer q =
p� p0 / J�1, with classical scaling dictated by Eq. (3).
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(2⇡)3 and the Feynman vertex

V (k,k0) is the potential in the center of mass frame.

Classical Limit. The above EFT is obtained from the
full theory by integrating out massless force carriers me-
diating near-instantaneous interactions and taking the
NR limit, |k|, |k0| ⌧ mA,B . By definition, these potential
modes have energies parametrically less than their mo-
menta, so |k
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| ⌧ |k�k0|.1 For a classical system, the
NR particles are separated by a distance |r| ⇠ 1/|k�k0|
that is parametrically larger than the Compton wave-
lengths of the particles, |k|, |k0|. The resulting hierarchy,
|k � k0| ⌧ |k|, |k0|, corresponds to an expansion in large
angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling

J�1 / k � k0 / �1, (3)

where k,k0 / 1 + J�1. The first relation holds because
angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0|2 / J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2 �k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
also be traded for k2 and k02 via the equations of motion.
We thus choose a field basis in which V only depends on
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are momentum-dependent functions characterizing con-
tributions at ith order in the coupling constant and all
orders in velocity. Here we make the usual assumption
that there is a convergent velocity expansion.

Amplitudes. From Eq. (1) and Eq. (2) it is straightfor-

1 While it may seem peculiar to integrate out massless states, the
potential modes are o↵-shell. Moreover, the EFT contains ultra-
soft modes with energy and momenta of order |k�k0| but these
encode dissipative e↵ects irrelevant to the conservative potential.

2 Higher order classical terms odd in  include factors of log |k�k0|.
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where from here on the +i0 prescription will be implicit.
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V (k,k0) is the potential in the center of mass frame.

Classical Limit. The above EFT is obtained from the
full theory by integrating out massless force carriers me-
diating near-instantaneous interactions and taking the
NR limit, |k|, |k0| ⌧ mA,B . By definition, these potential
modes have energies parametrically less than their mo-
menta, so |k

0

�k0
0

| ⌧ |k�k0|.1 For a classical system, the
NR particles are separated by a distance |r| ⇠ 1/|k�k0|
that is parametrically larger than the Compton wave-
lengths of the particles, |k|, |k0|. The resulting hierarchy,
|k � k0| ⌧ |k|, |k0|, corresponds to an expansion in large
angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling

J�1 / k � k0 / �1, (3)

where k,k0 / 1 + J�1. The first relation holds because
angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0|2 / J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2 �k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
also be traded for k2 and k02 via the equations of motion.
We thus choose a field basis in which V only depends on
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are momentum-dependent functions characterizing con-
tributions at ith order in the coupling constant and all
orders in velocity. Here we make the usual assumption
that there is a convergent velocity expansion.

Amplitudes. From Eq. (1) and Eq. (2) it is straightfor-

1 While it may seem peculiar to integrate out massless states, the
potential modes are o↵-shell. Moreover, the EFT contains ultra-
soft modes with energy and momenta of order |k�k0| but these
encode dissipative e↵ects irrelevant to the conservative potential.

2 Higher order classical terms odd in  include factors of log |k�k0|.
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FIG. 2. The eight independent diagrams showing the propa-
gator structure of integrals from which the classical contribu-
tions are extracted.

(e.g. see Ref. [26]). For our D construction we obtain
a BCJ representation, allowing us to express the gravity
cuts directly in terms of local diagrams. The particular
representation was chosen such that we can ignore the ref-
erence momenta when projecting the internal states into
gravitons. Further details will be given elsewhere [24].
To facilitate integration, we merge the cuts into a sin-

gle integrand whose cuts match those in Fig. 1. This is
achieved using an ansatz in terms of eight independent
diagrams with only cubic vertices displayed in Fig. 2. The
diagrammatic numerators are polynomials of the appro-
priate dimension exhibiting the symmetries of the corre-
sponding diagram. Their coefficients are then fixed via
the method of maximal cuts [27], whereby cuts of the in-
tegrand are constrained to match the known ones. This
approach is sufficient for the two-loop problem.
Integration. Our method of integration follows Ref. [21].
For convenience, we give a short summary here, leaving
details to Ref. [24]. Terms in the integrand take the form,

I =
numerator

graviton propagators
×
∏

i

1

ω2
i − k2

i −m2
i

, (6)

where i labels each matter line, which has energy ωi,
spatial momentum ki, and mass mi. The matter prop-
agators can be factored into particle and antiparticle
poles, ωi ±

√
k2
i +m2

i . We then express the integrand
as I = N ×

∏
i

1
zi
, i.e. in terms of the particle poles

zi = ωi−
√
k2
i +m2

i and an effective numerator N which
absorbs the rest of the integrand.
Following the procedure outlined in Ref. [21], we first

evaluate the energy integrals. At two loops, i.e. 3PM
order, we integrate over two independent combinations
of energies, ω and ω′, in the potential region. As we will

prove in detail in Ref. [24], the result is

Ĩ =

∫
dω

2π

dω′

2π
I(ω,ω′) =

∑

(i,j)

Sij Res
ωij ,ω

′

ij

I(ω,ω′), (7)

where the sum runs over distinct pairings (i, j) of matter
poles and zi = zj = 0 when (ω,ω′) = (ωij ,ω′

ij). Here Sij

is a calculable symmetry factor whose sign and magni-
tude depend on the topology of the cut graph. Note that
the residue for an (i, j) pairing will vanish if there are no
values of ω and ω′ for which zi = zj = 0.

The resulting quantity Ĩ depends on two independent
spatial loop momenta. To integrate over them we em-
ploy dimensional regularization to deal with ultraviolet
divergences stemming from the renormalization of delta
function contact interactions which do not contribute
classically. Due to the localization on energy residues,
Ĩ is a complicated, non-polynomial function of three-
dimensional invariants involving square roots. Neverthe-
less, we can series expand Ĩ in large m1,2, yielding poly-
nomials of kinematic invariants which we can integrate
at each order. After expanding, nearly all the spatial
integrals are simple bubbles for which there are known
analytic expressions [28]. The remaining integrals are
evaluated via integration-by-parts identities [29].
For diagrams free from infrared (IR) singularities gen-

erated by iterations of lower-loop graviton exchanges, we
have checked that our integrated results accord with sev-
eral standard methods in the Feynman integral litera-
ture, including the Mellin-Barnes representation [28, 30],
numerical integration via sector decomposition [31], and
differential equations [32] derived through integration-by-
parts reduction [29, 33]. Since the classical contribution
comes from certain residues on matter poles, the system
of differential equations omits integrals without support
on such residues.
Amplitude and potential. We apply the integration pro-
cedure outlined above order by order in the large-mass
expansion, i.e. in powers of velocity. Combining an ex-
plicit evaluation of the 3PM amplitude up to 7PN order
with information on the pole structure of individual in-
tegrals and exact, manifestly relativistic analytic results
for certain graph topologies, we conjecture a full, all or-
ders in velocity expression for the 3PM amplitude (whose
uniqueness will be discussed in Ref. [24]):

M3 =
πG3ν2m4 log q2

6γ2ξ

[
3− 6ν + 206νσ − 54σ2 + 108νσ2 + 4νσ3 −

48ν
(
3 + 12σ2 − 4σ4

)
arcsinh

√
σ−1
2√

σ2 − 1

−
18νγ

(
1− 2σ2

) (
1− 5σ2

)

(1 + γ) (1 + σ)

]
+

8π3G3ν4m6

γ4ξ

[
3γ

(
1− 2σ2

) (
1− 5σ2

)
F1 − 32m2ν2

(
1− 2σ2

)3
F2

]
,

(8)

where the log scale dependence is absorbed into a delta- function ultraviolet counterterm. Here we use center-of-
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(11)

where for convenience, the expressions for c1 and c2 in
Ref. [20] are reproduced here with slightly di↵erent nor-
malization and in our current notation. As emphasized
in Ref. [20], the cancellation of IR divergences between

M
(EFT)
3PM and M3PM depends critically on c1 and c2 and

thus provides a nontrivial check of our calculation.

Consistency checks. Our results pass several highly non-
trivial consistency checks (see Ref. [23] for more details).
First and foremost, we have verified that the 4PN terms
in our Hamiltonian are physically equivalent to known
results up to a canonical coordinate transformation,

(r,p) ! (R,P ) = (A r +B p, C p+D r)

A = 1� Gm⌫

2|r| + · · · , B =
G(1� 2/⌫)

4m|r| p · r + · · · ,

C = 1 +
Gm⌫

2|r| + · · · , D = �Gm⌫

2|r|3 p · r + · · · ,
(12)

with ellipses denoting higher order corrections entering
as a power series in G/|r|, p2, and (p · r)2/r2 (for past
treatments, see Ref. [35, 36]). To derive this coordinate
transformation we generate an ansatz for A,B,C,D and
constrain it to preserve the Poisson brackets, {r,p} =
{R,P } = 1 and other vanishing ones , in the spirit of
Ref. [37]. We verify that within this space of canonical
transformations exists a subspace which maps our Hamil-
tonian in Eq. (11) to the one in the literature, e.g. as sum-
marized in Eq.(8.41) of Ref. [9], up to the intersection of
3PM and 4PN accuracy.

Second, applying the methods of Ref. [20] we have
checked that the full-theory amplitude M3PM in Eq. (8)

is identical to the amplitude M
(EFT)
3PM computed from the

conservative Hamiltonian in Ref. [9] up to 4PN accuracy.
Third, we have extracted from our Hamiltonian the

coordinate invariant energy of a circular orbit as a func-
tion of the period. Working at 2PN order—the highest
order subsumed by 3PM which is relevant to a virialized
system—we agree with known results [8].

Fourth, we have extracted from our Hamiltonian the
3PM-accurate scattering angle for an unbound orbit in
center of mass frame:

� = �m�⇠fM1

2⇡L|p| � m�⇠fM2

2⇡L2
+

2m�⇠|p|fM3

⇡L3

� m2�2⇠2fM1
fM2

2⇡3L3|p| +
m3�3⇠3fM3

1

96⇡3L3|p|3 , (13)

where the angular momentum L = b|p|, b is the im-

pact parameter and the fMi are the IR finite pieces of
the PM amplitudes with their q dependence removed:
fM1 = q2M

0

1PM, fM2 = |q|M 0

2PM, fM3 = M
0

3PM/ log q2.
Here the prime denotes that these are the IR finite pieces
defined in our subtraction, e.g. for 3PM this is given by
the log q2 term in Eq. (8); for 1PM and 2PM see Ref. [20].
Truncated to 4PN order, this expression is in agreement
with known results [38].
Last but not least, in the probe limit m1 ⌧ m2, our

result exactly coincides with the Hamiltonian for a point
particle in a Schwarzschild background to O(G3) and all
orders in velocity, e.g. as given in Eq.(8) of Ref. [39].

Conclusions. We have presented the first computation
of the 3PM amplitude for classical scattering of gravita-
tionally interacting massive spinless particles. From this
amplitude we have extracted the corresponding conser-
vative Hamiltonian for binary dynamics at 3PM order.
Our results leave many avenues for future work, e.g. ex-

tending to higher orders in the PM expansion, incorpo-
rating important phenomena like spin, radiation, finite-
size e↵ects, and connecting our results to the e↵ective
one-body formalism [3, 11, 34, 40].
The remarkable simplicity of the 3PM amplitude in

Eq. (8) and potential in Eq. (11) bodes well for future
progress. Moreover, since the amplitude and EFT meth-
ods employed in this paper are far from exhausted, we
believe that the progress we have reported marks only
the beginning.

[1] B. P. Abbott et al. [LIGO Scientific and Virgo Collab-
orations], “Observation of gravitational waves from a

binary black hole merger,” Phys. Rev. Lett. 116, no.

Matching
2

Here
R
k1···kn

=
R

d3k1
(2⇡)3 · · · d3kn

(2⇡)3 and the Feynman vertex

V (k,k0) is the potential in the center of mass frame.

Classical Limit. The above EFT is obtained from the
full theory by integrating out massless force carriers me-
diating near-instantaneous interactions and taking the
NR limit, |k|, |k0| ⌧ mA,B . By definition, these potential
modes have energies parametrically less than their mo-
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| ⌧ |k�k0|.1 For a classical system, the
NR particles are separated by a distance |r| ⇠ 1/|k�k0|
that is parametrically larger than the Compton wave-
lengths of the particles, |k|, |k0|. The resulting hierarchy,
|k � k0| ⌧ |k|, |k0|, corresponds to an expansion in large
angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling

J�1 / k � k0 / �1, (3)

where k,k0 / 1 + J�1. The first relation holds because
angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0|2 / J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2 �k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
also be traded for k2 and k02 via the equations of motion.
We thus choose a field basis in which V only depends on
k2 + k02 and |k � k0|, so [4]

V (k,k0) =
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|k � k0|2 (c
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where we have only included terms which are classical
and thus scale as J3 in accordance with Eq. (3), and

the ellipsis denotes terms higher order in .2 ci
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are momentum-dependent functions characterizing con-
tributions at ith order in the coupling constant and all
orders in velocity. Here we make the usual assumption
that there is a convergent velocity expansion.

Amplitudes. From Eq. (1) and Eq. (2) it is straightfor-

1 While it may seem peculiar to integrate out massless states, the
potential modes are o↵-shell. Moreover, the EFT contains ultra-
soft modes with energy and momenta of order |k�k0| but these
encode dissipative e↵ects irrelevant to the conservative potential.

2 Higher order classical terms odd in  include factors of log |k�k0|.
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where from here on the +i0 prescription will be implicit.
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Note that 0  ⇠  1/4 and moreover ⇠ and E are de-
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Eq. (6). We also define the momentum transfer q =
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comprised purely of iterated bubbles, so

ML-loop

EFT

= · · ·
p

-p

k
1

-k
1

kL

-kL

p0

-p0

. (9)

For convenience, we merge each pair of matter lines into
an e↵ective “two-body propagator”,

�(k) = i

Z
dk

0

2⇡

1

k
0

�p
k2 +m2

A

1

E � k
0

�p
k2 +m2

B

=
1

E �p
k2 +m2

A �p
k2 +m2

B

,

(10)
where the second line is obtained by closing the contour
in k

0

either upwards or downwards in the complex plane.
The contribution at L loops is then

ML-loop

EFT

= �
Z

k1···kL

V (p,k
1

)�(k
1

) · · ·�(kL)V (kL,p
0)

= �
Z

k1···kL

NL-loop

EFT

X2

1

X2

2

· · ·X2

L+1

Y
1

Y
2

· · ·YL
,

(11)

=<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

5

c1 =
⌫2m2

�2⇠

�
1� 2�2

�
, c2 =

⌫2m3

�2⇠

"
3

4

�
1� 5�2

�� 4⌫�
�
1� 2�2

�

�⇠
� ⌫2(1� ⇠)

�
1� 2�2

�2

2�3⇠2

#
,

c3 =
⌫2m4

�2⇠

"
1

12

�
3� 6⌫ + 206⌫� � 54�2 + 108⌫�2 + 4⌫�3

��
4⌫

�
3 + 12�2 � 4�4

�
sinh�1

q
��1
2p

�2 � 1

� 3⌫�
�
1� 2�2

� �
1� 5�2

�

2(1 + �)(1 + �)
� 3⌫�

�
7� 20�2

�

2�⇠
� ⌫2

�
3 + 8� � 3⇠ � 15�2 � 80��2 + 15⇠�2

� �
1� 2�2

�

4�3⇠2

+
2⌫3(3� 4⇠)�

�
1� 2�2

�2

�4⇠3
+

⌫4(1� 2⇠)
�
1� 2�2

�3

2�6⇠4

#
,

(11)

where for convenience, the expressions for c1 and c2 in
Ref. [20] are reproduced here with slightly di↵erent nor-
malization and in our current notation. As emphasized
in Ref. [20], the cancellation of IR divergences between

M
(EFT)
3PM and M3PM depends critically on c1 and c2 and

thus provides a nontrivial check of our calculation.

Consistency checks. Our results pass several highly non-
trivial consistency checks (see Ref. [23] for more details).
First and foremost, we have verified that the 4PN terms
in our Hamiltonian are physically equivalent to known
results up to a canonical coordinate transformation,

(r,p) ! (R,P ) = (A r +B p, C p+D r)
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2|r| + · · · , B =
G(1� 2/⌫)
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C = 1 +
Gm⌫

2|r| + · · · , D = �Gm⌫

2|r|3 p · r + · · · ,
(12)

with ellipses denoting higher order corrections entering
as a power series in G/|r|, p2, and (p · r)2/r2 (for past
treatments, see Ref. [35, 36]). To derive this coordinate
transformation we generate an ansatz for A,B,C,D and
constrain it to preserve the Poisson brackets, {r,p} =
{R,P } = 1 and other vanishing ones , in the spirit of
Ref. [37]. We verify that within this space of canonical
transformations exists a subspace which maps our Hamil-
tonian in Eq. (11) to the one in the literature, e.g. as sum-
marized in Eq.(8.41) of Ref. [9], up to the intersection of
3PM and 4PN accuracy.

Second, applying the methods of Ref. [20] we have
checked that the full-theory amplitude M3PM in Eq. (8)

is identical to the amplitude M
(EFT)
3PM computed from the

conservative Hamiltonian in Ref. [9] up to 4PN accuracy.
Third, we have extracted from our Hamiltonian the

coordinate invariant energy of a circular orbit as a func-
tion of the period. Working at 2PN order—the highest
order subsumed by 3PM which is relevant to a virialized
system—we agree with known results [8].

Fourth, we have extracted from our Hamiltonian the
3PM-accurate scattering angle for an unbound orbit in
center of mass frame:

� = �m�⇠fM1
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+
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where the angular momentum L = b|p|, b is the im-

pact parameter and the fMi are the IR finite pieces of
the PM amplitudes with their q dependence removed:
fM1 = q2M

0

1PM, fM2 = |q|M 0

2PM, fM3 = M
0

3PM/ log q2.
Here the prime denotes that these are the IR finite pieces
defined in our subtraction, e.g. for 3PM this is given by
the log q2 term in Eq. (8); for 1PM and 2PM see Ref. [20].
Truncated to 4PN order, this expression is in agreement
with known results [38].
Last but not least, in the probe limit m1 ⌧ m2, our

result exactly coincides with the Hamiltonian for a point
particle in a Schwarzschild background to O(G3) and all
orders in velocity, e.g. as given in Eq.(8) of Ref. [39].

Conclusions. We have presented the first computation
of the 3PM amplitude for classical scattering of gravita-
tionally interacting massive spinless particles. From this
amplitude we have extracted the corresponding conser-
vative Hamiltonian for binary dynamics at 3PM order.
Our results leave many avenues for future work, e.g. ex-

tending to higher orders in the PM expansion, incorpo-
rating important phenomena like spin, radiation, finite-
size e↵ects, and connecting our results to the e↵ective
one-body formalism [3, 11, 34, 40].
The remarkable simplicity of the 3PM amplitude in

Eq. (8) and potential in Eq. (11) bodes well for future
progress. Moreover, since the amplitude and EFT meth-
ods employed in this paper are far from exhausted, we
believe that the progress we have reported marks only
the beginning.
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diating near-instantaneous interactions and taking the
NR limit, |k|, |k0| ⌧ mA,B . By definition, these potential
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that is parametrically larger than the Compton wave-
lengths of the particles, |k|, |k0|. The resulting hierarchy,
|k � k0| ⌧ |k|, |k0|, corresponds to an expansion in large
angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling

J�1 / k � k0 / �1, (3)

where k,k0 / 1 + J�1. The first relation holds because
angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0|2 / J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2 �k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
also be traded for k2 and k02 via the equations of motion.
We thus choose a field basis in which V only depends on
k2 + k02 and |k � k0|, so [4]

V (k,k0) =
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|k � k0|2 (c
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|k � k0|+ · · · ) , (4)

where we have only included terms which are classical
and thus scale as J3 in accordance with Eq. (3), and

the ellipsis denotes terms higher order in .2 ci
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are momentum-dependent functions characterizing con-
tributions at ith order in the coupling constant and all
orders in velocity. Here we make the usual assumption
that there is a convergent velocity expansion.

Amplitudes. From Eq. (1) and Eq. (2) it is straightfor-

1 While it may seem peculiar to integrate out massless states, the
potential modes are o↵-shell. Moreover, the EFT contains ultra-
soft modes with energy and momenta of order |k�k0| but these
encode dissipative e↵ects irrelevant to the conservative potential.
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where from here on the +i0 prescription will be implicit.
We are interested in the scattering amplitude for a pro-

cess where p and p0 are the incoming and outgoing three-
momenta in the center of mass frame, and EA and EB

are the energies of the incoming particles,

EA,B =
q
p2 +m2

A,B =
q
p02 +m2

A,B . (6)

We define the total energy and the reduced energy ratio,
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Note that 0  ⇠  1/4 and moreover ⇠ and E are de-
pendent variables since EA and EB are related through
Eq. (6). We also define the momentum transfer q =
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lengths of the particles, |k|, |k0|. The resulting hierarchy,
|k � k0| ⌧ |k|, |k0|, corresponds to an expansion in large
angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling

J�1 / k � k0 / �1, (3)

where k,k0 / 1 + J�1. The first relation holds because
angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0|2 / J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2 �k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
also be traded for k2 and k02 via the equations of motion.
We thus choose a field basis in which V only depends on
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are momentum-dependent functions characterizing con-
tributions at ith order in the coupling constant and all
orders in velocity. Here we make the usual assumption
that there is a convergent velocity expansion.

Amplitudes. From Eq. (1) and Eq. (2) it is straightfor-

1 While it may seem peculiar to integrate out massless states, the
potential modes are o↵-shell. Moreover, the EFT contains ultra-
soft modes with energy and momenta of order |k�k0| but these
encode dissipative e↵ects irrelevant to the conservative potential.
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Classical Limit. The above EFT is obtained from the
full theory by integrating out massless force carriers me-
diating near-instantaneous interactions and taking the
NR limit, |k|, |k0| ⌧ mA,B . By definition, these potential
modes have energies parametrically less than their mo-
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that is parametrically larger than the Compton wave-
lengths of the particles, |k|, |k0|. The resulting hierarchy,
|k � k0| ⌧ |k|, |k0|, corresponds to an expansion in large
angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling
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where k,k0 / 1 + J�1. The first relation holds because
angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0|2 / J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2 �k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
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k2 + k02 and |k � k0|, so [4]

V (k,k0) =


|k � k0|2 (c
1

+ c
2

|k � k0|+ · · · ) , (4)

where we have only included terms which are classical
and thus scale as J3 in accordance with Eq. (3), and

the ellipsis denotes terms higher order in .2 ci
⇣

k2
+k02

2

⌘

are momentum-dependent functions characterizing con-
tributions at ith order in the coupling constant and all
orders in velocity. Here we make the usual assumption
that there is a convergent velocity expansion.

Amplitudes. From Eq. (1) and Eq. (2) it is straightfor-

1 While it may seem peculiar to integrate out massless states, the
potential modes are o↵-shell. Moreover, the EFT contains ultra-
soft modes with energy and momenta of order |k�k0| but these
encode dissipative e↵ects irrelevant to the conservative potential.

2 Higher order classical terms odd in  include factors of log |k�k0|.

ward to obtain the Feynman rules,

(k
0

,k) =
i

k
0

�
q

k2 +m2

A,B + i0
,

k k0

-k0-k

= �iV (k,k0) ,

(5)

where from here on the +i0 prescription will be implicit.
We are interested in the scattering amplitude for a pro-

cess where p and p0 are the incoming and outgoing three-
momenta in the center of mass frame, and EA and EB

are the energies of the incoming particles,

EA,B =
q
p2 +m2

A,B =
q
p02 +m2

A,B . (6)

We define the total energy and the reduced energy ratio,

E = EA + EB and ⇠ =
EAEB

(EA + EB)2
. (7)

Note that 0  ⇠  1/4 and moreover ⇠ and E are de-
pendent variables since EA and EB are related through
Eq. (6). We also define the momentum transfer q =
p� p0 / J�1, with classical scaling dictated by Eq. (3).
The EFT amplitude can either be organized in terms

of the  expansion or in terms of loop orders, so

M
EFT

=
1X

i=1

M (i)
EFT

=
1X

L=0

ML-loop

EFT

, (8)

where M (i)
EFT

is at ith order in  and arises from Feynman
diagrams at i� 1 loops and below.

Since pair creation of matter particles is kinematically
forbidden in the NR limit, the amplitude at L loops is
comprised purely of iterated bubbles, so

ML-loop

EFT

= · · ·
p

-p

k
1

-k
1

kL

-kL

p0

-p0

. (9)

For convenience, we merge each pair of matter lines into
an e↵ective “two-body propagator”,

�(k) = i

Z
dk

0

2⇡

1

k
0

�p
k2 +m2

A

1

E � k
0

�p
k2 +m2

B

=
1

E �p
k2 +m2

A �p
k2 +m2

B

,

(10)
where the second line is obtained by closing the contour
in k

0

either upwards or downwards in the complex plane.
The contribution at L loops is then

ML-loop

EFT

= �
Z

k1···kL

V (p,k
1

)�(k
1

) · · ·�(kL)V (kL,p
0)

= �
Z

k1···kL

NL-loop

EFT

X2

1

X2

2

· · ·X2

L+1

Y
1

Y
2

· · ·YL
,

(11)
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FIG. 2. The eight independent diagrams showing the propa-
gator structure of integrals from which the classical contribu-
tions are extracted.

(e.g. see Ref. [26]). For our D construction we obtain
a BCJ representation, allowing us to express the gravity
cuts directly in terms of local diagrams. The particular
representation was chosen such that we can ignore the ref-
erence momenta when projecting the internal states into
gravitons. Further details will be given elsewhere [24].
To facilitate integration, we merge the cuts into a sin-

gle integrand whose cuts match those in Fig. 1. This is
achieved using an ansatz in terms of eight independent
diagrams with only cubic vertices displayed in Fig. 2. The
diagrammatic numerators are polynomials of the appro-
priate dimension exhibiting the symmetries of the corre-
sponding diagram. Their coefficients are then fixed via
the method of maximal cuts [27], whereby cuts of the in-
tegrand are constrained to match the known ones. This
approach is sufficient for the two-loop problem.
Integration. Our method of integration follows Ref. [21].
For convenience, we give a short summary here, leaving
details to Ref. [24]. Terms in the integrand take the form,

I =
numerator

graviton propagators
×
∏

i

1

ω2
i − k2

i −m2
i

, (6)

where i labels each matter line, which has energy ωi,
spatial momentum ki, and mass mi. The matter prop-
agators can be factored into particle and antiparticle
poles, ωi ±

√
k2
i +m2

i . We then express the integrand
as I = N ×

∏
i

1
zi
, i.e. in terms of the particle poles

zi = ωi−
√
k2
i +m2

i and an effective numerator N which
absorbs the rest of the integrand.
Following the procedure outlined in Ref. [21], we first

evaluate the energy integrals. At two loops, i.e. 3PM
order, we integrate over two independent combinations
of energies, ω and ω′, in the potential region. As we will

prove in detail in Ref. [24], the result is

Ĩ =

∫
dω

2π

dω′

2π
I(ω,ω′) =

∑

(i,j)

Sij Res
ωij ,ω

′

ij

I(ω,ω′), (7)

where the sum runs over distinct pairings (i, j) of matter
poles and zi = zj = 0 when (ω,ω′) = (ωij ,ω′

ij). Here Sij

is a calculable symmetry factor whose sign and magni-
tude depend on the topology of the cut graph. Note that
the residue for an (i, j) pairing will vanish if there are no
values of ω and ω′ for which zi = zj = 0.

The resulting quantity Ĩ depends on two independent
spatial loop momenta. To integrate over them we em-
ploy dimensional regularization to deal with ultraviolet
divergences stemming from the renormalization of delta
function contact interactions which do not contribute
classically. Due to the localization on energy residues,
Ĩ is a complicated, non-polynomial function of three-
dimensional invariants involving square roots. Neverthe-
less, we can series expand Ĩ in large m1,2, yielding poly-
nomials of kinematic invariants which we can integrate
at each order. After expanding, nearly all the spatial
integrals are simple bubbles for which there are known
analytic expressions [28]. The remaining integrals are
evaluated via integration-by-parts identities [29].
For diagrams free from infrared (IR) singularities gen-

erated by iterations of lower-loop graviton exchanges, we
have checked that our integrated results accord with sev-
eral standard methods in the Feynman integral litera-
ture, including the Mellin-Barnes representation [28, 30],
numerical integration via sector decomposition [31], and
differential equations [32] derived through integration-by-
parts reduction [29, 33]. Since the classical contribution
comes from certain residues on matter poles, the system
of differential equations omits integrals without support
on such residues.
Amplitude and potential. We apply the integration pro-
cedure outlined above order by order in the large-mass
expansion, i.e. in powers of velocity. Combining an ex-
plicit evaluation of the 3PM amplitude up to 7PN order
with information on the pole structure of individual in-
tegrals and exact, manifestly relativistic analytic results
for certain graph topologies, we conjecture a full, all or-
ders in velocity expression for the 3PM amplitude (whose
uniqueness will be discussed in Ref. [24]):

M3 =
πG3ν2m4 log q2

6γ2ξ

[
3− 6ν + 206νσ − 54σ2 + 108νσ2 + 4νσ3 −

48ν
(
3 + 12σ2 − 4σ4

)
arcsinh

√
σ−1
2√

σ2 − 1

−
18νγ

(
1− 2σ2

) (
1− 5σ2

)

(1 + γ) (1 + σ)

]
+

8π3G3ν4m6

γ4ξ

[
3γ

(
1− 2σ2

) (
1− 5σ2

)
F1 − 32m2ν2

(
1− 2σ2

)3
F2

]
,

(8)

where the log scale dependence is absorbed into a delta- function ultraviolet counterterm. Here we use center-of-
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poles and zi = zj = 0 when (ω,ω′) = (ωij ,ω′
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is a calculable symmetry factor whose sign and magni-
tude depend on the topology of the cut graph. Note that
the residue for an (i, j) pairing will vanish if there are no
values of ω and ω′ for which zi = zj = 0.

The resulting quantity Ĩ depends on two independent
spatial loop momenta. To integrate over them we em-
ploy dimensional regularization to deal with ultraviolet
divergences stemming from the renormalization of delta
function contact interactions which do not contribute
classically. Due to the localization on energy residues,
Ĩ is a complicated, non-polynomial function of three-
dimensional invariants involving square roots. Neverthe-
less, we can series expand Ĩ in large m1,2, yielding poly-
nomials of kinematic invariants which we can integrate
at each order. After expanding, nearly all the spatial
integrals are simple bubbles for which there are known
analytic expressions [28]. The remaining integrals are
evaluated via integration-by-parts identities [29].
For diagrams free from infrared (IR) singularities gen-

erated by iterations of lower-loop graviton exchanges, we
have checked that our integrated results accord with sev-
eral standard methods in the Feynman integral litera-
ture, including the Mellin-Barnes representation [28, 30],
numerical integration via sector decomposition [31], and
differential equations [32] derived through integration-by-
parts reduction [29, 33]. Since the classical contribution
comes from certain residues on matter poles, the system
of differential equations omits integrals without support
on such residues.
Amplitude and potential. We apply the integration pro-
cedure outlined above order by order in the large-mass
expansion, i.e. in powers of velocity. Combining an ex-
plicit evaluation of the 3PM amplitude up to 7PN order
with information on the pole structure of individual in-
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for certain graph topologies, we conjecture a full, all or-
ders in velocity expression for the 3PM amplitude (whose
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approach is sufficient for the two-loop problem.
Integration. Our method of integration follows Ref. [21].
For convenience, we give a short summary here, leaving
details to Ref. [24]. Terms in the integrand take the form,

I =
numerator

graviton propagators ×
∏

i

1

ω2
i − k2

i −m2
i

, (6)

where i labels each matter line, which has energy ωi,
spatial momentum ki, and mass mi. The matter prop-
agators can be factored into particle and antiparticle
poles, ωi ±

√
k2
i +m2

i . We then express the integrand
as I = N ×

∏
i

1
zi , i.e. in terms of the particle poles

zi = ωi−
√
k2
i +m2

i and an effective numerator N which
absorbs the rest of the integrand.
Following the procedure outlined in Ref. [21], we first

evaluate the energy integrals. At two loops, i.e. 3PM
order, we integrate over two independent combinations
of energies, ω and ω

′
, in the potential region. As we will

prove in detail in Ref. [24], the result is
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the residue for an (i, j) pairing will vanish if there are no
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less, we can series expand Ĩ in large m1,2, yielding poly-
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integrals are simple bubbles for which there are known
analytic expressions [28]. The remaining integrals are
evaluated via integration-by-parts identities [29].
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erated by iterations of lower-loop graviton exchanges, we
have checked that our integrated results accord with sev-
eral standard methods in the Feynman integral litera-
ture, including the Mellin-Barnes representation [28, 30],
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differential equations [32] derived through integration-by-
parts reduction [29, 33]. Since the classical contribution
comes from certain residues on matter poles, the system
of differential equations omits integrals without support
on such residues.
Amplitude and potential. We apply the integration pro-
cedure outlined above order by order in the large-mass
expansion, i.e. in powers of velocity. Combining an ex-
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�
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#
,

c3 =
⌫2m4

�2⇠

"
1

12

�
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�
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�

2(1 + �)(1 + �)
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�

2�⇠
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�
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�

4�3⇠2

+
2⌫3(3� 4⇠)�

�
1� 2�2

�2

�4⇠3
+

⌫4(1� 2⇠)
�
1� 2�2

�3

2�6⇠4

#
,

(11)

where for convenience, the expressions for c1 and c2 in
Ref. [20] are reproduced here with slightly di↵erent nor-
malization and in our current notation. As emphasized
in Ref. [20], the cancellation of IR divergences between

M
(EFT)
3PM and M3PM depends critically on c1 and c2 and

thus provides a nontrivial check of our calculation.

Consistency checks. Our results pass several highly non-
trivial consistency checks (see Ref. [23] for more details).
First and foremost, we have verified that the 4PN terms
in our Hamiltonian are physically equivalent to known
results up to a canonical coordinate transformation,

(r,p) ! (R,P ) = (A r +B p, C p+D r)

A = 1� Gm⌫

2|r| + · · · , B =
G(1� 2/⌫)

4m|r| p · r + · · · ,

C = 1 +
Gm⌫

2|r| + · · · , D = �Gm⌫

2|r|3 p · r + · · · ,
(12)

with ellipses denoting higher order corrections entering
as a power series in G/|r|, p2, and (p · r)2/r2 (for past
treatments, see Ref. [35, 36]). To derive this coordinate
transformation we generate an ansatz for A,B,C,D and
constrain it to preserve the Poisson brackets, {r,p} =
{R,P } = 1 and other vanishing ones , in the spirit of
Ref. [37]. We verify that within this space of canonical
transformations exists a subspace which maps our Hamil-
tonian in Eq. (11) to the one in the literature, e.g. as sum-
marized in Eq.(8.41) of Ref. [9], up to the intersection of
3PM and 4PN accuracy.

Second, applying the methods of Ref. [20] we have
checked that the full-theory amplitude M3PM in Eq. (8)

is identical to the amplitude M
(EFT)
3PM computed from the

conservative Hamiltonian in Ref. [9] up to 4PN accuracy.
Third, we have extracted from our Hamiltonian the

coordinate invariant energy of a circular orbit as a func-
tion of the period. Working at 2PN order—the highest
order subsumed by 3PM which is relevant to a virialized
system—we agree with known results [8].

Fourth, we have extracted from our Hamiltonian the
3PM-accurate scattering angle for an unbound orbit in
center of mass frame:

� = �m�⇠fM1

2⇡L|p| � m�⇠fM2

2⇡L2
+

2m�⇠|p|fM3

⇡L3

� m2�2⇠2fM1
fM2

2⇡3L3|p| +
m3�3⇠3fM3

1

96⇡3L3|p|3 , (13)

where the angular momentum L = b|p|, b is the im-

pact parameter and the fMi are the IR finite pieces of
the PM amplitudes with their q dependence removed:
fM1 = q2M

0

1PM, fM2 = |q|M 0

2PM, fM3 = M
0

3PM/ log q2.
Here the prime denotes that these are the IR finite pieces
defined in our subtraction, e.g. for 3PM this is given by
the log q2 term in Eq. (8); for 1PM and 2PM see Ref. [20].
Truncated to 4PN order, this expression is in agreement
with known results [38].
Last but not least, in the probe limit m1 ⌧ m2, our

result exactly coincides with the Hamiltonian for a point
particle in a Schwarzschild background to O(G3) and all
orders in velocity, e.g. as given in Eq.(8) of Ref. [39].

Conclusions. We have presented the first computation
of the 3PM amplitude for classical scattering of gravita-
tionally interacting massive spinless particles. From this
amplitude we have extracted the corresponding conser-
vative Hamiltonian for binary dynamics at 3PM order.
Our results leave many avenues for future work, e.g. ex-

tending to higher orders in the PM expansion, incorpo-
rating important phenomena like spin, radiation, finite-
size e↵ects, and connecting our results to the e↵ective
one-body formalism [3, 11, 34, 40].
The remarkable simplicity of the 3PM amplitude in

Eq. (8) and potential in Eq. (11) bodes well for future
progress. Moreover, since the amplitude and EFT meth-
ods employed in this paper are far from exhausted, we
believe that the progress we have reported marks only
the beginning.

[1] B. P. Abbott et al. [LIGO Scientific and Virgo Collab-
orations], “Observation of gravitational waves from a

binary black hole merger,” Phys. Rev. Lett. 116, no.
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used in showing the exponentiation of the eikonal ampli-
tude [21, 22].

After performing the k
0

integral we expand the remain-
ing three-dimensional integrand in the NR limit of large
mA,B . We then extract the classical contribution accord-
ing to the J power counting discussed below Eq. (12). For
example, the triangle integrals in Eq. (17) depend only
on the four-momenta p

1

and p
1

�p
3

, whose on-shell inner
products are functions only of |q| and mA,B . Hence, the
NR expansion is a power series in |q|/mA,B and since
q / J�1 it is obvious that the classical term coincides
with the leading term in the large mass expansion. Sim-
ilarly, for the box integral we expand in large EA,B .

In summary, the scalar integrals can be written as

I⇤ =
i

2E

Z

k

1

X2

1

X2

2

Y
1

+ · · · ,

I5,4 = � i

4mA,B

Z

k

1

X2

1

X2

2

+ · · · ,
(20)

where the ellipses denote contributions which are higher
order in J�1 and thus quantum, and

R
k

1

X2
1X

2
2
= 1

8|q| by

standard integral formulas [23]. Including the coupling
constant, we find that 2I⇤ / J4 and 2I5,4 / J3, so
the triangle is classical but the box is actually superclas-
sical since it encodes iterations of the tree-level potential
that will cancel with similar terms in the EFT.

IV. MATCHING CALCULATION

The potential coe�cients ci are obtained by matching
the EFT and full theory amplitudes order-by-order in ,

so M (i) � M (i)
EFT

= 0. This procedure is greatly sim-
plified by expressing this di↵erence of amplitudes at the

integrand level, since terms with poles in Yn which eval-
uate to infrared non-analyticities are canceled without
performing complicated integrals. This cancelation oc-
curs because the EFT and full theory have identical cut
structure at low energies, as mandated by the starting
assumption that the theories describe the same infrared
dynamics. This holds at all loops, provided all relevant
momentum regions have been included in the EFT.

That such a subtraction can be done at the integrand
level should not be obvious because loop momenta in
distinct diagrams generally have ambiguous relative ori-
entation since there is no intrinsic origin in loop momen-
tum space. Crucially, in our case the integrands can be
aligned by matching their Yn poles. The remaining terms
then trivially integrate to rational functions of the exter-
nal kinematics.

At leading and next-to-leading order in  we find
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#
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where the EFT and full theory integrand numerators are

N 1-loop
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◆
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(22)

Since the left-hand sides of Eq. (21) are zero, we can solve
explicitly for c

1

and c
2

. We find the following solutions,
which apply to all orders in velocity:

c
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4E2⇠
and c

2

(p2) =
1

128E2⇠
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#
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Note that c
2

is simply a rational function of p2 since, as
discussed above, terms in the integral that have poles in
Y
1

that would yield infrared logarithms cancel exactly at
the integrand level. In particular, the O(Y 0

1

) term in the
di↵erence of numerators is
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d⇤ � d2?>
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+O(Y

1

) , (24)

which implies that d⇤ = d2?>. Indeed, this relation is
obvious from the point of view of unitarity in the full
theory, since the coe�cient of the scalar box integral is
given by the product of tree amplitudes.

V. GRAVITY RESULTS

We have computed the classical potential at leading
and next-to-leading order, c

1

and c
2

in Eq. (23), ex-
pressed in terms of the scalar functions d?>, d5, and d4
that are the natural outputs of a generalized unitarity
calculation. For GR, both the full amplitude calcula-
tion [24] as well as the unitarity calculation have been
completed [4, 8, 9, 11], yielding
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3

FIG. 2. The eight independent diagrams showing the propa-
gator structure of integrals from which the classical contribu-
tions are extracted.

(e.g. see Ref. [26]). For our D construction we obtain
a BCJ representation, allowing us to express the gravity
cuts directly in terms of local diagrams. The particular
representation was chosen such that we can ignore the ref-
erence momenta when projecting the internal states into
gravitons. Further details will be given elsewhere [24].
To facilitate integration, we merge the cuts into a sin-

gle integrand whose cuts match those in Fig. 1. This is
achieved using an ansatz in terms of eight independent
diagrams with only cubic vertices displayed in Fig. 2. The
diagrammatic numerators are polynomials of the appro-
priate dimension exhibiting the symmetries of the corre-
sponding diagram. Their coefficients are then fixed via
the method of maximal cuts [27], whereby cuts of the in-
tegrand are constrained to match the known ones. This
approach is sufficient for the two-loop problem.
Integration. Our method of integration follows Ref. [21].
For convenience, we give a short summary here, leaving
details to Ref. [24]. Terms in the integrand take the form,

I =
numerator

graviton propagators
×
∏

i

1

ω2
i − k2

i −m2
i

, (6)

where i labels each matter line, which has energy ωi,
spatial momentum ki, and mass mi. The matter prop-
agators can be factored into particle and antiparticle
poles, ωi ±

√
k2
i +m2

i . We then express the integrand
as I = N ×

∏
i

1
zi
, i.e. in terms of the particle poles

zi = ωi−
√
k2
i +m2

i and an effective numerator N which
absorbs the rest of the integrand.
Following the procedure outlined in Ref. [21], we first

evaluate the energy integrals. At two loops, i.e. 3PM
order, we integrate over two independent combinations
of energies, ω and ω′, in the potential region. As we will

prove in detail in Ref. [24], the result is

Ĩ =

∫
dω

2π

dω′

2π
I(ω,ω′) =

∑

(i,j)

Sij Res
ωij ,ω

′

ij

I(ω,ω′), (7)

where the sum runs over distinct pairings (i, j) of matter
poles and zi = zj = 0 when (ω,ω′) = (ωij ,ω′

ij). Here Sij

is a calculable symmetry factor whose sign and magni-
tude depend on the topology of the cut graph. Note that
the residue for an (i, j) pairing will vanish if there are no
values of ω and ω′ for which zi = zj = 0.

The resulting quantity Ĩ depends on two independent
spatial loop momenta. To integrate over them we em-
ploy dimensional regularization to deal with ultraviolet
divergences stemming from the renormalization of delta
function contact interactions which do not contribute
classically. Due to the localization on energy residues,
Ĩ is a complicated, non-polynomial function of three-
dimensional invariants involving square roots. Neverthe-
less, we can series expand Ĩ in large m1,2, yielding poly-
nomials of kinematic invariants which we can integrate
at each order. After expanding, nearly all the spatial
integrals are simple bubbles for which there are known
analytic expressions [28]. The remaining integrals are
evaluated via integration-by-parts identities [29].
For diagrams free from infrared (IR) singularities gen-

erated by iterations of lower-loop graviton exchanges, we
have checked that our integrated results accord with sev-
eral standard methods in the Feynman integral litera-
ture, including the Mellin-Barnes representation [28, 30],
numerical integration via sector decomposition [31], and
differential equations [32] derived through integration-by-
parts reduction [29, 33]. Since the classical contribution
comes from certain residues on matter poles, the system
of differential equations omits integrals without support
on such residues.
Amplitude and potential. We apply the integration pro-
cedure outlined above order by order in the large-mass
expansion, i.e. in powers of velocity. Combining an ex-
plicit evaluation of the 3PM amplitude up to 7PN order
with information on the pole structure of individual in-
tegrals and exact, manifestly relativistic analytic results
for certain graph topologies, we conjecture a full, all or-
ders in velocity expression for the 3PM amplitude (whose
uniqueness will be discussed in Ref. [24]):
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+
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(
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(8)

where the log scale dependence is absorbed into a delta- function ultraviolet counterterm. Here we use center-of-
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where for convenience, the expressions for c1 and c2 in
Ref. [20] are reproduced here with slightly di↵erent nor-
malization and in our current notation. As emphasized
in Ref. [20], the cancellation of IR divergences between

M
(EFT)
3PM and M3PM depends critically on c1 and c2 and

thus provides a nontrivial check of our calculation.

Consistency checks. Our results pass several highly non-
trivial consistency checks (see Ref. [23] for more details).
First and foremost, we have verified that the 4PN terms
in our Hamiltonian are physically equivalent to known
results up to a canonical coordinate transformation,

(r,p) ! (R,P ) = (A r +B p, C p+D r)

A = 1� Gm⌫

2|r| + · · · , B =
G(1� 2/⌫)

4m|r| p · r + · · · ,

C = 1 +
Gm⌫

2|r| + · · · , D = �Gm⌫

2|r|3 p · r + · · · ,
(12)

with ellipses denoting higher order corrections entering
as a power series in G/|r|, p2, and (p · r)2/r2 (for past
treatments, see Ref. [35, 36]). To derive this coordinate
transformation we generate an ansatz for A,B,C,D and
constrain it to preserve the Poisson brackets, {r,p} =
{R,P } = 1 and other vanishing ones , in the spirit of
Ref. [37]. We verify that within this space of canonical
transformations exists a subspace which maps our Hamil-
tonian in Eq. (11) to the one in the literature, e.g. as sum-
marized in Eq.(8.41) of Ref. [9], up to the intersection of
3PM and 4PN accuracy.

Second, applying the methods of Ref. [20] we have
checked that the full-theory amplitude M3PM in Eq. (8)

is identical to the amplitude M
(EFT)
3PM computed from the

conservative Hamiltonian in Ref. [9] up to 4PN accuracy.
Third, we have extracted from our Hamiltonian the

coordinate invariant energy of a circular orbit as a func-
tion of the period. Working at 2PN order—the highest
order subsumed by 3PM which is relevant to a virialized
system—we agree with known results [8].

Fourth, we have extracted from our Hamiltonian the
3PM-accurate scattering angle for an unbound orbit in
center of mass frame:

� = �m�⇠fM1

2⇡L|p| � m�⇠fM2

2⇡L2
+

2m�⇠|p|fM3

⇡L3

� m2�2⇠2fM1
fM2

2⇡3L3|p| +
m3�3⇠3fM3

1

96⇡3L3|p|3 , (13)

where the angular momentum L = b|p|, b is the im-

pact parameter and the fMi are the IR finite pieces of
the PM amplitudes with their q dependence removed:
fM1 = q2M

0

1PM, fM2 = |q|M 0

2PM, fM3 = M
0

3PM/ log q2.
Here the prime denotes that these are the IR finite pieces
defined in our subtraction, e.g. for 3PM this is given by
the log q2 term in Eq. (8); for 1PM and 2PM see Ref. [20].
Truncated to 4PN order, this expression is in agreement
with known results [38].
Last but not least, in the probe limit m1 ⌧ m2, our

result exactly coincides with the Hamiltonian for a point
particle in a Schwarzschild background to O(G3) and all
orders in velocity, e.g. as given in Eq.(8) of Ref. [39].

Conclusions. We have presented the first computation
of the 3PM amplitude for classical scattering of gravita-
tionally interacting massive spinless particles. From this
amplitude we have extracted the corresponding conser-
vative Hamiltonian for binary dynamics at 3PM order.
Our results leave many avenues for future work, e.g. ex-

tending to higher orders in the PM expansion, incorpo-
rating important phenomena like spin, radiation, finite-
size e↵ects, and connecting our results to the e↵ective
one-body formalism [3, 11, 34, 40].
The remarkable simplicity of the 3PM amplitude in

Eq. (8) and potential in Eq. (11) bodes well for future
progress. Moreover, since the amplitude and EFT meth-
ods employed in this paper are far from exhausted, we
believe that the progress we have reported marks only
the beginning.
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where for convenience, the expressions for c1 and c2 in
Ref. [20] are reproduced here with slightly di↵erent nor-
malization and in our current notation. As emphasized
in Ref. [20], the cancellation of IR divergences between

M
(EFT)
3PM and M3PM depends critically on c1 and c2 and

thus provides a nontrivial check of our calculation.

Consistency checks. Our results pass several highly non-
trivial consistency checks (see Ref. [23] for more details).
First and foremost, we have verified that the 4PN terms
in our Hamiltonian are physically equivalent to known
results up to a canonical coordinate transformation,

(r,p) ! (R,P ) = (A r +B p, C p+D r)

A = 1� Gm⌫

2|r| + · · · , B =
G(1� 2/⌫)

4m|r| p · r + · · · ,

C = 1 +
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2|r| + · · · , D = �Gm⌫

2|r|3 p · r + · · · ,
(12)

with ellipses denoting higher order corrections entering
as a power series in G/|r|, p2, and (p · r)2/r2 (for past
treatments, see Ref. [35, 36]). To derive this coordinate
transformation we generate an ansatz for A,B,C,D and
constrain it to preserve the Poisson brackets, {r,p} =
{R,P } = 1 and other vanishing ones , in the spirit of
Ref. [37]. We verify that within this space of canonical
transformations exists a subspace which maps our Hamil-
tonian in Eq. (11) to the one in the literature, e.g. as sum-
marized in Eq.(8.41) of Ref. [9], up to the intersection of
3PM and 4PN accuracy.

Second, applying the methods of Ref. [20] we have
checked that the full-theory amplitude M3PM in Eq. (8)

is identical to the amplitude M
(EFT)
3PM computed from the

conservative Hamiltonian in Ref. [9] up to 4PN accuracy.
Third, we have extracted from our Hamiltonian the

coordinate invariant energy of a circular orbit as a func-
tion of the period. Working at 2PN order—the highest
order subsumed by 3PM which is relevant to a virialized
system—we agree with known results [8].

Fourth, we have extracted from our Hamiltonian the
3PM-accurate scattering angle for an unbound orbit in
center of mass frame:
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pact parameter and the fMi are the IR finite pieces of
the PM amplitudes with their q dependence removed:
fM1 = q2M
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1PM, fM2 = |q|M 0

2PM, fM3 = M
0

3PM/ log q2.
Here the prime denotes that these are the IR finite pieces
defined in our subtraction, e.g. for 3PM this is given by
the log q2 term in Eq. (8); for 1PM and 2PM see Ref. [20].
Truncated to 4PN order, this expression is in agreement
with known results [38].
Last but not least, in the probe limit m1 ⌧ m2, our

result exactly coincides with the Hamiltonian for a point
particle in a Schwarzschild background to O(G3) and all
orders in velocity, e.g. as given in Eq.(8) of Ref. [39].

Conclusions. We have presented the first computation
of the 3PM amplitude for classical scattering of gravita-
tionally interacting massive spinless particles. From this
amplitude we have extracted the corresponding conser-
vative Hamiltonian for binary dynamics at 3PM order.
Our results leave many avenues for future work, e.g. ex-

tending to higher orders in the PM expansion, incorpo-
rating important phenomena like spin, radiation, finite-
size e↵ects, and connecting our results to the e↵ective
one-body formalism [3, 11, 34, 40].
The remarkable simplicity of the 3PM amplitude in

Eq. (8) and potential in Eq. (11) bodes well for future
progress. Moreover, since the amplitude and EFT meth-
ods employed in this paper are far from exhausted, we
believe that the progress we have reported marks only
the beginning.
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where for convenience, the expressions for c1 and c2 in
Ref. [20] are reproduced here with slightly di↵erent nor-
malization and in our current notation. As emphasized
in Ref. [20], the cancellation of IR divergences between

M
(EFT)
3PM and M3PM depends critically on c1 and c2 and

thus provides a nontrivial check of our calculation.

Consistency checks. Our results pass several highly non-
trivial consistency checks (see Ref. [23] for more details).
First and foremost, we have verified that the 4PN terms
in our Hamiltonian are physically equivalent to known
results up to a canonical coordinate transformation,

(r,p) ! (R,P ) = (A r +B p, C p+D r)

A = 1� Gm⌫

2|r| + · · · , B =
G(1� 2/⌫)

4m|r| p · r + · · · ,

C = 1 +
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2|r| + · · · , D = �Gm⌫

2|r|3 p · r + · · · ,
(12)

with ellipses denoting higher order corrections entering
as a power series in G/|r|, p2, and (p · r)2/r2 (for past
treatments, see Ref. [35, 36]). To derive this coordinate
transformation we generate an ansatz for A,B,C,D and
constrain it to preserve the Poisson brackets, {r,p} =
{R,P } = 1 and other vanishing ones , in the spirit of
Ref. [37]. We verify that within this space of canonical
transformations exists a subspace which maps our Hamil-
tonian in Eq. (11) to the one in the literature, e.g. as sum-
marized in Eq.(8.41) of Ref. [9], up to the intersection of
3PM and 4PN accuracy.

Second, applying the methods of Ref. [20] we have
checked that the full-theory amplitude M3PM in Eq. (8)

is identical to the amplitude M
(EFT)
3PM computed from the

conservative Hamiltonian in Ref. [9] up to 4PN accuracy.
Third, we have extracted from our Hamiltonian the

coordinate invariant energy of a circular orbit as a func-
tion of the period. Working at 2PN order—the highest
order subsumed by 3PM which is relevant to a virialized
system—we agree with known results [8].

Fourth, we have extracted from our Hamiltonian the
3PM-accurate scattering angle for an unbound orbit in
center of mass frame:
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pact parameter and the fMi are the IR finite pieces of
the PM amplitudes with their q dependence removed:
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3PM/ log q2.
Here the prime denotes that these are the IR finite pieces
defined in our subtraction, e.g. for 3PM this is given by
the log q2 term in Eq. (8); for 1PM and 2PM see Ref. [20].
Truncated to 4PN order, this expression is in agreement
with known results [38].
Last but not least, in the probe limit m1 ⌧ m2, our

result exactly coincides with the Hamiltonian for a point
particle in a Schwarzschild background to O(G3) and all
orders in velocity, e.g. as given in Eq.(8) of Ref. [39].

Conclusions. We have presented the first computation
of the 3PM amplitude for classical scattering of gravita-
tionally interacting massive spinless particles. From this
amplitude we have extracted the corresponding conser-
vative Hamiltonian for binary dynamics at 3PM order.
Our results leave many avenues for future work, e.g. ex-

tending to higher orders in the PM expansion, incorpo-
rating important phenomena like spin, radiation, finite-
size e↵ects, and connecting our results to the e↵ective
one-body formalism [3, 11, 34, 40].
The remarkable simplicity of the 3PM amplitude in

Eq. (8) and potential in Eq. (11) bodes well for future
progress. Moreover, since the amplitude and EFT meth-
ods employed in this paper are far from exhausted, we
believe that the progress we have reported marks only
the beginning.
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Here we use center of mass coordinates where the incom-
ing and outgoing particle momenta are ±p and ±(p�q),
respectively, and have included the nonrelativistic nor-

malization factor, 1/4E1E2, where E1,2 =
q

p2 +m2
1,2.

We also define the total mass m = m1 + m2, the
symmetric mass ratio ⌫ = m1m2/m

2, the total energy
E = E1 +E2, the symmetric energy ratio ⇠ = E1E2/E

2,
the energy-mass ratio � = E/m, and the relativistic
kinematic invariant � = p1·p2

m1m2
. Note that the sinh�1

factor is proportional to the sum of particle rapidities,
tanh�1 |p|/E1,2.

Eq. (8) only includes q-dependent terms which persist
in the classical limit. In particular, the log q2 term ulti-
mately feeds into the conservative Hamiltonian through
the Fourier transform

⇥
log q2

⇤
FT

= � 1
2⇡|r|3 , while the re-

maining IR divergent piece cancels in the EFT matching.
For completeness, we present expressions for the latter in
dimensional regularization, keeping only the classically

relevant terms in the small-|q| expansion,

F1 =

Z
d3�2✏k

(2⇡)3�2✏

e(�E�log 4⇡)

X2
1Y1X2

= � i

16⇡|p||q|

1

✏
� log(16q2)

�
� log q2

16⇡2p2
,

F2 =

Z
d3�2✏k

(2⇡)3�2✏

d3�2✏k0

(2⇡)3�2✏

e2(�E�log 4⇡)

X2
1Y1X2

2Y2X2
3

= � 1

128p2q2⇡2


1

✏2
� 2

✏
log q2 + 2 log2 q2 � ⇡2

6

�

+
i

64⇡|q||p|3 � 1

256⇡2p4
log q2, (9)

dropping terms at O(|q|0) or higher and expressing the
integrands in the notation of Ref. [20]. While the O(✏)
contributions to the coe�cients of these integrals are
needed to obtain the full amplitude in dimensional reg-
ularization, our integrand-level IR subtraction bypasses
this issue.
The Hamiltonian is extracted from the amplitude us-

ing the EFT method developed in Refs. [20, 21, 33] (see
Ref. [34] for another approach). In particular, consider
massive spinless particles interacting via the center of
mass Hamiltonian

H(p, r) =
q
p2 +m2

1 +
q

p2 +m2
2 + V (p, r),

V (p, r) =
1X

i=1

ci(p
2)

✓
G

|r|
◆i

,
(10)

where r is the distance vector between particles and i
runs over the PM expansion. Note that the form of
the above Hamiltonian implicitly fixes a gauge in which
terms involving p · r or time derivatives of p are absent.
We then compute the scattering amplitude of massive

scalars, M (EFT) =
P1

i=1 M
(EFT)
iPM , where M (EFT)

3PM receives
contributions from diagrams with two or fewer loops de-
pending on c1, c2, and c3. In Ref. [20], the coe�cients c1
and c2 were extracted analytically to all orders in veloc-

ity. Inserting these into M
(EFT)
3PM e↵ectively implements

the subtraction of iterated contributions. By equating

M
(EFT)
3PM = M3PM, we solve for the 3PM coe�cient c3.
The main result of the present work is the 3PM poten-

tial, encapsulated by the coe�cients

3PM
3X

i=1

ci(p
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✓
G
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◆i

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

!21



Checks

Construct diffeo to map Hamiltonians 

4

mass coordinates where the incoming and outgoing par-
ticle momenta are ±p and ±(p − q), respectively. We
emphasize that M3 includes the nonrelativistic normal-

ization factor, 1/4E1E2, where E1,2 =
√
p2 +m2

1,2. We

also define the total mass m = m1 +m2, the symmetric
mass ratio ν = m1m2/m2, the total energy E = E1+E2,
the symmetric energy ratio ξ = E1E2/E2, the energy-
mass ratio γ = E/m, and the relativistic kinematic
invariant σ = p1·p2

m1m2
. Note that the arcsinh factor is

actually proportional to the sum of particle rapidities,
arctanh |p|/E1,2.
Eq. (8) only includes q-dependent terms which persist

in the classical limit. In particular, the log q2 term ulti-
mately feeds into the conservative Hamiltonian through
the Fourier transform
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in the

notation described in Eq.(12) of Ref. [21], will cancel in
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EFT methods developed in Refs. [21, 22, 34] (see Ref. [12]

for another approach). Consider massive spinless parti-
cles interacting via the center-of-mass Hamiltonian
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2 + V (p, r),

V (p, r) =
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G

|r|

)i

,
(9)

where r is the distance vector between particles and i la-
bels PM orders. The above Hamiltonian is in a gauge in
which terms involving p·r or time derivatives of p are ab-
sent. We then compute the scattering amplitude of mas-

sive scalars, M(EFT) =
∑∞

i=1 M
(EFT)
i , where M(EFT)

3
comes from diagrams with two or fewer loops that de-
pend on c1, c2, and c3. In Ref. [21], the coefficients c1
and c2 were extracted analytically to all orders in veloc-

ity. Inserting these into M(EFT)
3 effectively implements

the subtraction of iterated contributions. By equating

M(EFT)
3 = M3, we solve for the 3PM coefficient c3.
The main result of the present work is the 3PM poten-

tial, encapsulated in the coefficients

c1 =
ν2m2

γ2ξ

(
1− 2σ2

)
, c2 =

ν2m3

γ2ξ

[
3

4

(
1− 5σ2

)
−

4νσ
(
1− 2σ2

)

γξ
−

ν2(1 − ξ)
(
1− 2σ2

)2

2γ3ξ2

]

,

c3 =
ν2m4

γ2ξ

[
1

12

(
3− 6ν + 206νσ − 54σ2 + 108νσ2 + 4νσ3

)
−

4ν
(
3 + 12σ2 − 4σ4

)
arcsinh

√
σ−1
2√

σ2 − 1

−
3νγ

(
1− 2σ2

) (
1− 5σ2

)

2(1 + γ)(1 + σ)
−

3νσ
(
7− 20σ2

)

2γξ
−

ν2
(
3 + 8γ − 3ξ − 15σ2 − 80γσ2 + 15ξσ2

) (
1− 2σ2

)

4γ3ξ2

+
2ν3(3− 4ξ)σ

(
1− 2σ2

)2

γ4ξ3
+

ν4(1− 2ξ)
(
1− 2σ2

)3

2γ6ξ4

]

,

(10)

where for convenience, the expressions for c1 and c2 in
Ref. [21] are reproduced here with slightly different nor-
malization and in our current notation. As emphasized
in Ref. [21], the cancellation of IR divergences between

M(EFT)
3 and M3 depends critically on c1 and c2 and thus

provides a nontrivial check of our calculation.
Consistency checks. Our results pass several nontrivial
albeit overlapping consistency checks (see Ref. [24] for
details). First and foremost, we have verified that the
4PN terms in our Hamiltonian are equivalent to known
results up to a canonical coordinate transformation,

(r,p) → (R,P ) = (A r +B p, C p+D r)

A = 1− Gmν

2|r| + · · · , B =
G(1 − 2/ν)

4m|r| p · r + · · · ,

C = 1 +
Gmν

2|r| + · · · , D = −Gmν

2|r|3 p · r + · · · ,

(11)
with ellipses denoting higher order corrections entering

as a power series in G/|r|, p2, and (p · r)2/r2 (for past
treatments, see Ref. [35, 36]). To derive this coordinate
transformation we generate an ansatz for A,B,C,D and
constrain it to preserve the Poisson brackets, i.e. {r,p} =
{R,P } = 1 with all other brackets vanishing, in the
spirit of Ref. [37]. We verify that within this space of
canonical transformations exists a subspace which maps
our Hamiltonian in Eq. (10) to the one in the literature,
e.g. as summarized in Eq.(8.41) of Ref. [9], up to the
intersection of 3PM and 4PN accuracy.

Second, applying the methods of Ref. [21] we have
checked that the full-theory amplitude M3 in Eq. (8)

is identical to the amplitude M(EFT)
3 computed from the

conservative Hamiltonian in Ref. [9] up to 4PN accuracy.

Third, we have extracted from our Hamiltonian the
coordinate invariant energy of a circular orbit as a func-
tion of the period. Working at 2PN order—the highest
order subsumed by 3PM which is relevant to a virialized
system—we agree with known results [8].
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as a power series in G/|r|, p2, and (p · r)2/r2 (for past
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transformation we generate an ansatz for A,B,C,D and
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e.g. as summarized in Eq.(8.41) of Ref. [9], up to the
intersection of 3PM and 4PN accuracy.

Second, applying the methods of Ref. [21] we have
checked that the full-theory amplitude M3 in Eq. (8)

is identical to the amplitude M(EFT)
3 computed from the

conservative Hamiltonian in Ref. [9] up to 4PN accuracy.

Third, we have extracted from our Hamiltonian the
coordinate invariant energy of a circular orbit as a func-
tion of the period. Working at 2PN order—the highest
order subsumed by 3PM which is relevant to a virialized
system—we agree with known results [8].

Potentials e.g. from PN and NRGR are in different gauges:
V � p2 � p02 ⇠ p · q ⇠ p · r
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Compute on-shell amplitudes  
from different potentials

2

Here
R
k1···kn

=
R

d3k1
(2⇡)3 · · · d3kn

(2⇡)3 and the Feynman vertex

V (k,k0) is the potential in the center of mass frame.

Classical Limit. The above EFT is obtained from the
full theory by integrating out massless force carriers me-
diating near-instantaneous interactions and taking the
NR limit, |k|, |k0| ⌧ mA,B . By definition, these potential
modes have energies parametrically less than their mo-
menta, so |k

0

�k0
0

| ⌧ |k�k0|.1 For a classical system, the
NR particles are separated by a distance |r| ⇠ 1/|k�k0|
that is parametrically larger than the Compton wave-
lengths of the particles, |k|, |k0|. The resulting hierarchy,
|k � k0| ⌧ |k|, |k0|, corresponds to an expansion in large
angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling

J�1 / k � k0 / �1, (3)

where k,k0 / 1 + J�1. The first relation holds because
angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0|2 / J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2 �k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
also be traded for k2 and k02 via the equations of motion.
We thus choose a field basis in which V only depends on
k2 + k02 and |k � k0|, so [4]

V (k,k0) =


|k � k0|2 (c
1

+ c
2

|k � k0|+ · · · ) , (4)

where we have only included terms which are classical
and thus scale as J3 in accordance with Eq. (3), and

the ellipsis denotes terms higher order in .2 ci
⇣

k2
+k02

2

⌘

are momentum-dependent functions characterizing con-
tributions at ith order in the coupling constant and all
orders in velocity. Here we make the usual assumption
that there is a convergent velocity expansion.

Amplitudes. From Eq. (1) and Eq. (2) it is straightfor-

1 While it may seem peculiar to integrate out massless states, the
potential modes are o↵-shell. Moreover, the EFT contains ultra-
soft modes with energy and momenta of order |k�k0| but these
encode dissipative e↵ects irrelevant to the conservative potential.

2 Higher order classical terms odd in  include factors of log |k�k0|.

ward to obtain the Feynman rules,

(k
0

,k) =
i

k
0

�
q

k2 +m2

A,B + i0
,

k k0

-k0-k

= �iV (k,k0) ,

(5)

where from here on the +i0 prescription will be implicit.
We are interested in the scattering amplitude for a pro-

cess where p and p0 are the incoming and outgoing three-
momenta in the center of mass frame, and EA and EB

are the energies of the incoming particles,

EA,B =
q
p2 +m2

A,B =
q
p02 +m2

A,B . (6)

We define the total energy and the reduced energy ratio,

E = EA + EB and ⇠ =
EAEB

(EA + EB)2
. (7)

Note that 0  ⇠  1/4 and moreover ⇠ and E are de-
pendent variables since EA and EB are related through
Eq. (6). We also define the momentum transfer q =
p� p0 / J�1, with classical scaling dictated by Eq. (3).
The EFT amplitude can either be organized in terms

of the  expansion or in terms of loop orders, so

M
EFT

=
1X

i=1

M (i)
EFT

=
1X

L=0

ML-loop

EFT

, (8)

where M (i)
EFT

is at ith order in  and arises from Feynman
diagrams at i� 1 loops and below.

Since pair creation of matter particles is kinematically
forbidden in the NR limit, the amplitude at L loops is
comprised purely of iterated bubbles, so

ML-loop

EFT

= · · ·
p

-p

k
1

-k
1

kL

-kL

p0

-p0

. (9)

For convenience, we merge each pair of matter lines into
an e↵ective “two-body propagator”,

�(k) = i

Z
dk

0

2⇡

1

k
0

�p
k2 +m2

A

1

E � k
0

�p
k2 +m2

B

=
1

E �p
k2 +m2

A �p
k2 +m2

B

,

(10)
where the second line is obtained by closing the contour
in k

0

either upwards or downwards in the complex plane.
The contribution at L loops is then

ML-loop

EFT

= �
Z

k1···kL

V (p,k
1

)�(k
1

) · · ·�(kL)V (kL,p
0)

= �
Z

k1···kL

NL-loop

EFT

X2

1

X2

2

· · ·X2

L+1

Y
1

Y
2

· · ·YL
,

(11)
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NR limit, |k|, |k0| ⌧ mA,B . By definition, these potential
modes have energies parametrically less than their mo-
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that is parametrically larger than the Compton wave-
lengths of the particles, |k|, |k0|. The resulting hierarchy,
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Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling
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where k,k0 / 1 + J�1. The first relation holds because
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potential has the same scaling as the leading Coulomb
interaction, /|k � k0|2 / J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2 �k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
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We thus choose a field basis in which V only depends on
k2 + k02 and |k � k0|, so [4]
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ants k2, k02, and k ·k0. However, since k2 �k02 vanishes
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angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling

J�1 / k � k0 / �1, (3)

where k,k0 / 1 + J�1. The first relation holds because
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the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0|2 / J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2 �k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
also be traded for k2 and k02 via the equations of motion.
We thus choose a field basis in which V only depends on
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tributions at ith order in the coupling constant and all
orders in velocity. Here we make the usual assumption
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Amplitudes. From Eq. (1) and Eq. (2) it is straightfor-

1 While it may seem peculiar to integrate out massless states, the
potential modes are o↵-shell. Moreover, the EFT contains ultra-
soft modes with energy and momenta of order |k�k0| but these
encode dissipative e↵ects irrelevant to the conservative potential.

2 Higher order classical terms odd in  include factors of log |k�k0|.

ward to obtain the Feynman rules,

(k
0

,k) =
i

k
0

�
q

k2 +m2

A,B + i0
,

k k0

-k0-k

= �iV (k,k0) ,

(5)

where from here on the +i0 prescription will be implicit.
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are the energies of the incoming particles,
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pendent variables since EA and EB are related through
Eq. (6). We also define the momentum transfer q =
p� p0 / J�1, with classical scaling dictated by Eq. (3).
The EFT amplitude can either be organized in terms

of the  expansion or in terms of loop orders, so

M
EFT

=
1X

i=1

M (i)
EFT

=
1X

L=0

ML-loop

EFT

, (8)

where M (i)
EFT

is at ith order in  and arises from Feynman
diagrams at i� 1 loops and below.

Since pair creation of matter particles is kinematically
forbidden in the NR limit, the amplitude at L loops is
comprised purely of iterated bubbles, so

ML-loop

EFT

= · · ·
p

-p

k
1

-k
1

kL

-kL

p0

-p0

. (9)

For convenience, we merge each pair of matter lines into
an e↵ective “two-body propagator”,

�(k) = i

Z
dk

0

2⇡

1

k
0

�p
k2 +m2

A

1

E � k
0

�p
k2 +m2

B

=
1

E �p
k2 +m2

A �p
k2 +m2

B

,

(10)
where the second line is obtained by closing the contour
in k

0

either upwards or downwards in the complex plane.
The contribution at L loops is then

ML-loop

EFT

= �
Z

k1···kL

V (p,k
1

)�(k
1

) · · ·�(kL)V (kL,p
0)

= �
Z

k1···kL

NL-loop

EFT

X2

1

X2

2

· · ·X2

L+1

Y
1

Y
2

· · ·YL
,

(11)

2

Here
R
k1···kn

=
R

d3k1
(2⇡)3 · · · d3kn

(2⇡)3 and the Feynman vertex

V (k,k0) is the potential in the center of mass frame.

Classical Limit. The above EFT is obtained from the
full theory by integrating out massless force carriers me-
diating near-instantaneous interactions and taking the
NR limit, |k|, |k0| ⌧ mA,B . By definition, these potential
modes have energies parametrically less than their mo-
menta, so |k
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| ⌧ |k�k0|.1 For a classical system, the
NR particles are separated by a distance |r| ⇠ 1/|k�k0|
that is parametrically larger than the Compton wave-
lengths of the particles, |k|, |k0|. The resulting hierarchy,
|k � k0| ⌧ |k|, |k0|, corresponds to an expansion in large
angular momentum, J ⇠ |k ⇥ r| � 1, as utilized by
Damour [7, 10] . The classical component of any quan-
tity is then extracted via the scaling

J�1 / k � k0 / �1, (3)

where k,k0 / 1 + J�1. The first relation holds because
angular momentum scales linearly with distance while
the second relation holds due to the virial theorem. Here
 is the coupling constant, which for example in gravity
is the gravitational constant,  = 4⇡G. The classical
potential has the same scaling as the leading Coulomb
interaction, /|k � k0|2 / J3.

Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2 �k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
ilarly, Eq. (2) has no energy dependence since energy can
also be traded for k2 and k02 via the equations of motion.
We thus choose a field basis in which V only depends on
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Higher order potential terms are parametrized by ar-
bitrary Hermitian combinations of the rotational invari-
ants k2, k02, and k ·k0. However, since k2 �k02 vanishes
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ants k2, k02, and k ·k0. However, since k2 �k02 vanishes
on-shell, it can be eliminated by a field redefinition. Sim-
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Compute physical quantities
- 2PN energy of circular orbit
- 4PN scattering angle
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(11)

where for convenience, the expressions for c1 and c2 in
Ref. [20] are reproduced here with slightly di↵erent nor-
malization and in our current notation. As emphasized
in Ref. [20], the cancellation of IR divergences between

M
(EFT)
3PM and M3PM depends critically on c1 and c2 and

thus provides a nontrivial check of our calculation.

Consistency checks. Our results pass several highly non-
trivial consistency checks (see Ref. [23] for more details).
First and foremost, we have verified that the 4PN terms
in our Hamiltonian are physically equivalent to known
results up to a canonical coordinate transformation,

(r,p) ! (R,P ) = (A r +B p, C p+D r)

A = 1� Gm⌫

2|r| + · · · , B =
G(1� 2/⌫)

4m|r| p · r + · · · ,

C = 1 +
Gm⌫

2|r| + · · · , D = �Gm⌫

2|r|3 p · r + · · · ,
(12)

with ellipses denoting higher order corrections entering
as a power series in G/|r|, p2, and (p · r)2/r2 (for past
treatments, see Ref. [35, 36]). To derive this coordinate
transformation we generate an ansatz for A,B,C,D and
constrain it to preserve the Poisson brackets, {r,p} =
{R,P } = 1 and other vanishing ones , in the spirit of
Ref. [37]. We verify that within this space of canonical
transformations exists a subspace which maps our Hamil-
tonian in Eq. (11) to the one in the literature, e.g. as sum-
marized in Eq.(8.41) of Ref. [9], up to the intersection of
3PM and 4PN accuracy.

Second, applying the methods of Ref. [20] we have
checked that the full-theory amplitude M3PM in Eq. (8)

is identical to the amplitude M
(EFT)
3PM computed from the

conservative Hamiltonian in Ref. [9] up to 4PN accuracy.
Third, we have extracted from our Hamiltonian the

coordinate invariant energy of a circular orbit as a func-
tion of the period. Working at 2PN order—the highest
order subsumed by 3PM which is relevant to a virialized
system—we agree with known results [8].

Fourth, we have extracted from our Hamiltonian the
3PM-accurate scattering angle for an unbound orbit in
center of mass frame:

� = �m�⇠fM1

2⇡L|p| � m�⇠fM2

2⇡L2
+

2m�⇠|p|fM3

⇡L3

� m2�2⇠2fM1
fM2

2⇡3L3|p| +
m3�3⇠3fM3

1

96⇡3L3|p|3 , (13)

where the angular momentum L = b|p|, b is the im-

pact parameter and the fMi are the IR finite pieces of
the PM amplitudes with their q dependence removed:
fM1 = q2M

0

1PM, fM2 = |q|M 0

2PM, fM3 = M
0

3PM/ log q2.
Here the prime denotes that these are the IR finite pieces
defined in our subtraction, e.g. for 3PM this is given by
the log q2 term in Eq. (8); for 1PM and 2PM see Ref. [20].
Truncated to 4PN order, this expression is in agreement
with known results [38].
Last but not least, in the probe limit m1 ⌧ m2, our

result exactly coincides with the Hamiltonian for a point
particle in a Schwarzschild background to O(G3) and all
orders in velocity, e.g. as given in Eq.(8) of Ref. [39].

Conclusions. We have presented the first computation
of the 3PM amplitude for classical scattering of gravita-
tionally interacting massive spinless particles. From this
amplitude we have extracted the corresponding conser-
vative Hamiltonian for binary dynamics at 3PM order.
Our results leave many avenues for future work, e.g. ex-

tending to higher orders in the PM expansion, incorpo-
rating important phenomena like spin, radiation, finite-
size e↵ects, and connecting our results to the e↵ective
one-body formalism [3, 11, 34, 40].
The remarkable simplicity of the 3PM amplitude in

Eq. (8) and potential in Eq. (11) bodes well for future
progress. Moreover, since the amplitude and EFT meth-
ods employed in this paper are far from exhausted, we
believe that the progress we have reported marks only
the beginning.

[1] B. P. Abbott et al. [LIGO Scientific and Virgo Collab-
orations], “Observation of gravitational waves from a

binary black hole merger,” Phys. Rev. Lett. 116, no.

Bini, Damour
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* 5PN (bias), 6PN (LISA) 
* radiation, spin, tidal 
* further develop tools
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Quantum field theory is useful for GW astrophysics.
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GR has been extraordinarily  fruitful in correctly  predicting new physics, including the 

gravitational bending of light (or gravitational lensing), the gravitational redshift, black holes and 

gravitational waves.  GR also provided the overall framework for modern cosmology, including 

the expansion of the Universe. Even if GR is fully  correct (on lengthscales of astrophysical 

interest),  LISA may reveal more new physics from strong-field GR.  The famous singularity 

theorems of Penrose and Hawking assert that sufficiently  compact objects must collapse, 

resulting in some spacetime singularity, but it is only  a conjecture that the singularity is 

generically clothed by a black hole’s event horizon.  Might LISA reveal naked singularities or 

some other object formed of strongly warped spacetime?  Could some central objects in galactic 

nuclei represent some other form of matter, such as massive boson or soliton stars?   Since our 

understanding today of the nonlinear, strong gravity  regime of GR is quite limited, LISA’s “tests 

of GR” could reveal new objects that are unexpected, but perfectly consistent with GR.  

The inspiral, merger, and ringdown of MBH binaries

LISA’s strongest sources are 

expected to be coalescing MBH 

binaries where the components 

have roughly comparable masses, 

0.1 . M2/M1 < 1  .  T h e 

coalescence waveforms will be 

visible by  eye in the data stream, 

standing up well above the noise, 

as illustrated in Figure 4-1.

As depicted in Figure 4-2, the 

coalescence can be described in 

three stages: inspiral, merger, and 

ringdown (Flanagan & Hughes 

1998), all of which will typically 

be observable by  LISA. The 

inspiral stage is a relatively slow, 

adiabatic process in which the BHs 

spiral together on quasi-circular 

orbits.  The BHs have wide enough 

separations that they can be treated as 

point particles within the PN 

approximation; consequently, this 

stage can be computed analytically, 

with high-order PN expansions. The 

inspiral is followed by the dynamical 
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Figure 4-1  Gravitational wave signal for the final few  orbits, 

plunge, merger and ringdown of an MBH-MBH binary.  Here 

both MBHs have mass 105M� and are not spinning, the binary 

is at z=15, and is seen face-on. The signal is the sum of the 

gravitational waveform and simulated LISA noise.  Note that 

even at  z=15, the waveform stands up well above the noise 

and is visible in fine detail. The inset shows a longer stretch 

of data, containing the merger waveform.  The large-

amplitude, low-frequency “wiggles” are due to LISA’s accel-

eration noise, which rises at lower frequencies. 
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