Binary Black Holes and Gluon Scattering Amplitudes

Mikhail P. Solon Caltech

based on work with

Clifford Cheung, Ira Rothstein (PRL)

Zvi Bern, Clifford Cheung, Radu Roiban, Chia-Hsien Shen, Mao Zeng (PRL)

Zvi Bern, Clifford Cheung, Radu Roiban, Chia-Hsien Shen, Mao Zeng (long paper)

Gravitational Waves

New window into physics.

LIGO marks only the begining.

Theoretical Precision

COBE

Planck

LIGO

LISA

Perturbation Theory

$$
\begin{aligned}
& G\left(1+v^{2}+v^{4}+v^{6}+v^{8}+\ldots\right) \\
& G^{2}\left(1+v^{2}+v^{4}+v^{6}+v^{8}+\ldots\right) \\
& G^{3}\left(1+v^{2}+v^{4}+v^{6}+v^{8}+\ldots\right) \\
& G^{4}\left(1+v^{2}+v^{4}+v^{6}+v^{8}+\ldots\right) \\
& G^{5}\left(1+v^{2}+v^{4}+v^{6}+v^{8}+\ldots\right) \\
& G^{6}\left(1+v^{2}+v^{4}+v^{6}+v^{8}+\ldots\right)
\end{aligned}
$$ 2019

post-Newtonian

$G M / r \sim v^{2} \ll 1$
Blanchet, Damour, Mastrolia,

post-Minkowskian

$G M / r \ll 1$
Ledvinka, Schäfer, Bicak 2008
Westpfahl, Goller 1979, Damour 2016 Cheung, Rothstein, Solon 2018

Bern, Cheung, Roiban, Shen, Solon, Zeng 2019

5PN: biased parameter estimates, tidal effects

6PN+: LISA, ET
Scalability is key.

Quantum Field Theory

Binary Inspiral

New Result in Relativity
 Bern, Cheung, Roiban, Shen, Solon, Zeng 2019

$$
\begin{gathered}
H(\boldsymbol{p}, \boldsymbol{r})=\sqrt{\boldsymbol{p}^{2}+m_{1}^{2}}+\sqrt{\boldsymbol{p}^{2}+m_{2}^{2}}+\sum_{i=1}^{3} c_{i}\left(\boldsymbol{p}^{2}\right)\left(\frac{G}{|\boldsymbol{r}|}\right)^{i} \\
m= \\
m_{1}+m_{2}, \nu=\frac{m_{1} m_{2}}{m^{2}}, E=E_{1}+E_{2}, \xi=\frac{E_{1} E_{2}}{E^{2}}, \gamma=\frac{E}{m}, \sigma=\frac{p_{1} \cdot p_{2}}{m_{1} m_{2}} \\
c_{1}=\frac{\nu^{2} m^{2}}{\gamma^{2} \xi}\left(1-2 \sigma^{2}\right) \quad c_{2}=\frac{\nu^{2} m^{3}}{\gamma^{2} \xi}\left[\frac{3}{4}\left(1-5 \sigma^{2}\right)-\frac{4 \nu \sigma\left(1-2 \sigma^{2}\right)}{\gamma \xi}-\frac{\nu^{2}(1-\xi)\left(1-2 \sigma^{2}\right)^{2}}{2 \gamma^{3} \xi^{2}}\right] \\
c_{3}=\frac{\nu^{2} m^{4}}{\gamma^{2} \xi}\left[\frac{1}{12}\left(3-6 \nu+206 \nu \sigma-54 \sigma^{2}+108 \nu \sigma^{2}+4 \nu \sigma^{3}\right)-\frac{4 \nu\left(3+12 \sigma^{2}-4 \sigma^{4}\right) \operatorname{arcsinh} \sqrt{\frac{\sigma-1}{2}}}{\sqrt{\sigma^{2}-1}}\right. \\
\\
\quad-\frac{3 \nu \gamma\left(1-2 \sigma^{2}\right)\left(1-5 \sigma^{2}\right)}{2(1+\gamma)(1+\sigma)}-\frac{3 \nu \sigma\left(7-20 \sigma^{2}\right)}{2 \gamma \xi}-\frac{\nu^{2}\left(3+8 \gamma-3 \xi-15 \sigma^{2}-80 \gamma \sigma^{2}+15 \xi \sigma^{2}\right)\left(1-2 \sigma^{2}\right)}{4 \gamma^{3} \xi^{2}} \\
\\
\left.+\frac{2 \nu^{3}(3-4 \xi) \sigma\left(1-2 \sigma^{2}\right)^{2}}{\gamma^{4} \xi^{3}}+\frac{\nu^{4}(1-2 \xi)\left(1-2 \sigma^{2}\right)^{3}}{2 \gamma^{6} \xi^{4}}\right],
\end{gathered}
$$

New Result in Relativity

Antonelli, Buonanno, Steinhoff, van de Meent, Vines 1901.07102

New Result in Relativity

Antonelli, Buonanno, Steinhoff, van de Meent, Vines 1901.07102

Quantum Field Theory

Binary Inspiral

Scattering Amplitudes

Feynman diagrams won't scale
hundred terms

two-to-two graviton scattering has 10^{20} terms at three loops

On-shell methods are powerful.

Generalized Unitarity

Double Copy
Kawai, Lewellen, Tye

e.g. H Cut in D=4

Product of three GR four-point amplitudes, obtained from YM amplitudes

$$
\begin{aligned}
& C^{2,2}=\sum_{\text {states }} M_{4}\left(2^{s},-8,7,3^{s}\right) M_{4}(-5,6,-7,8) M_{4}\left(1^{s}, 5,-6,4^{s}\right) \\
& M_{4}(1,2,3,4)=-i s_{12} A_{4}(1,2,3,4) A_{4}(1,2,4,3) \\
& A_{4}\left(1^{s}, 2^{+}, 3^{+}, 4^{s}\right)=i \frac{m_{1}^{2}[23]}{\frac{23\rangle t_{12}}{23}} \quad A_{4}\left(1^{-}, 2^{-}, 3^{+}, 4^{+}\right)=i \frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 41\rangle} \\
& A_{4}\left(1^{s}, 2^{+}, 3^{-}, 4^{s}\right)=i \frac{\langle 3| 1 \mid 2]^{2}}{t_{23} t_{12}} \quad A_{4}\left(1^{-}, 2^{+}, 3^{-}, 4^{+}\right)=i \frac{\langle 13\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 41\rangle}
\end{aligned}
$$

$(\text { gluon })^{2}=$ graviton + dilaton + axion by correlating gluon helicities in copies

$$
\begin{aligned}
& C^{\mathrm{H}-\mathrm{cut}}=2 i\left[\frac{1}{\left(p_{5}-p_{8}\right)^{2}}+\frac{1}{\left(p_{5}+p_{7}\right)^{2}}\right]\left[s_{23}^{2} m_{1}^{4} m_{2}^{4}+\frac{1}{s_{23}^{6}} \sum_{i=1,2}\left(\mathcal{E}_{i}^{4}+\mathcal{O}_{i}^{4}+6 \mathcal{O}_{i}^{2} \mathcal{E}_{i}^{2}\right)\right] \\
& \mathcal{E}_{1}^{2}=\frac{1}{4} s_{23}^{2}\left(t_{18} t_{25}-t_{12} t_{58}\right)^{2}, \quad \mathcal{O}_{1}^{2}=\mathcal{E}_{1}^{2}-m_{1}^{2} m_{2}^{2} s_{23}^{2} t_{58}^{2}, \\
& \mathcal{E}_{2}^{2}=\frac{1}{4} s_{23}^{2}\left(t_{17} t_{25}-t_{12} t_{57}-s_{23}\left(t_{17}+t_{57}\right)\right)^{2}, \quad \mathcal{O}_{2}^{2}=\mathcal{E}_{2}^{2}-m_{1}^{2} m_{2}^{2} s_{23}^{2} t_{57}^{2}
\end{aligned}
$$

Other Cuts

Effective Field Theory

$$
k_{0} \ll|\boldsymbol{k}| \ll \quad|\boldsymbol{p}| \ll m_{i}
$$

potential classical nonrelativistic

1. New integration strategy for full theory
2. Simple theory of scattering with an ansatz classical potential

Integration Strategy

$$
\mathcal{I}=\left[\prod_{i=1}^{n_{M}} \frac{1}{\varepsilon_{i}^{2}-\boldsymbol{k}_{i}^{2}-m_{i}^{2}}\right]\left[\prod_{j=1}^{n_{G}} \frac{1}{\omega_{j}^{2}-\ell_{j}^{2}}\right] \mathcal{N}
$$

$$
\underset{\text { raviton momenta }}{\ell=(\omega, \boldsymbol{\ell}) \quad \mathrm{d} \ell=\mathrm{d} \boldsymbol{\ell} \mathrm{~d} \omega \quad \omega \sim \frac{|\boldsymbol{p}||\boldsymbol{q}|}{m} \ll|\boldsymbol{\ell}| \sim|\boldsymbol{q}|}
$$

(1) matter pole form
(2) energy integral reduction $\mathcal{I}=\left[\prod_{i=1}^{n_{M}} \frac{1}{\varepsilon_{i}-\sqrt{\boldsymbol{k}_{i}^{2}-m_{i}^{2}}}\right] \tilde{\mathcal{N}}\left(\omega_{i}\right)$

Akhoury, Saotome, Sterman
D

$$
\omega-\omega_{P_{1}} \rightarrow 0
$$

$$
\int \frac{d \omega}{\omega-\omega_{P_{1}}+i \epsilon}=\frac{1}{2} \times(-2 \pi i)
$$

$\{$ 正

$$
\omega_{i}-\omega_{P_{i}} \rightarrow 0
$$

$$
\left\{\frac{(-2 \pi i)^{2}}{6},-\frac{(-2 \pi i)^{2}}{3}\right\}
$$

ㅍ

$$
\begin{gathered}
\left(\omega-\omega_{P_{1}}\right)\left(\omega-\omega_{P_{2}}\right) \rightarrow 0 \\
\widetilde{\mathcal{N}}(\omega) \rightarrow a \omega+b
\end{gathered}
$$

$$
\begin{aligned}
& \int \frac{d \omega}{\left(\omega-\omega_{P_{1}}+i \epsilon\right)\left(\omega-\omega_{P_{2}}-i \epsilon\right)} \\
& \frac{2 \pi i}{\omega_{P_{2}}-\omega_{P_{1}}} \sim \frac{1}{2 \boldsymbol{p} \ell+\ell^{2}}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \bar{V}=\bar{\nabla}+\bar{\triangle}+\square \nabla+\bar{\nabla}+\bar{\square} \\
& \int \mathrm{d} \omega \omega^{n}=0, n \geq 0 \Rightarrow \prod_{j}\left[\varepsilon_{j}-\sqrt{\boldsymbol{k}_{j}^{2}-m_{j}^{2}}\right]=0 \text { in } \tilde{\mathcal{N}}
\end{aligned}
$$

(2') residue method $\int \frac{d \omega}{2 \pi} \frac{d \omega^{\prime}}{2 \pi} \mathcal{I}\left(\omega, \omega^{\prime}\right)=\sum_{(i, j)} S_{i j} \underset{\omega_{i j}, \omega_{i j}^{2}}{\operatorname{Re}} \mathcal{I}\left(\omega, \omega^{\prime}\right)$
(3) spatial integration

$$
\mathcal{I}=\left[\prod_{i=1}^{n_{M}} \frac{1}{\varepsilon_{i}-\sqrt{\boldsymbol{k}_{i}^{2}-m_{i}^{2}}}\right]\left[\prod_{i=1}^{n_{M}} \frac{1}{\varepsilon_{i}+\sqrt{\boldsymbol{k}_{i}^{2}+m_{i}^{2}}}\right]\left[\prod_{j=1}^{n_{G}} \frac{1}{\omega_{j}^{2}-\ell_{j}^{2}}\right] \mathcal{N}
$$

potential, classical, nonrelativistic + IBP

$$
\begin{aligned}
& \widetilde{\mathcal{I}}=\sum_{\alpha} \sum_{\beta} \sum_{\gamma} \frac{f^{(\alpha \beta \gamma)}(\boldsymbol{\ell})}{\left[\boldsymbol{\ell}^{2}\right]^{\alpha}\left[(\boldsymbol{\ell}+\boldsymbol{w})^{2}\right]^{\beta}\left[2 \boldsymbol{z} \boldsymbol{\ell}+\boldsymbol{\ell}^{2}\right]^{\gamma}} \\
& \gamma=0 \quad \text { textbook: } \int \frac{d^{D-1} \boldsymbol{\ell}}{(2 \pi)^{D-1}} \frac{\ell^{\mu \mu} \ell^{\mu} \ldots \ell^{\mu_{n}}}{\left[\ell^{2}\right]^{\alpha}\left[(\boldsymbol{\ell}+\boldsymbol{w})^{2}\right]^{\beta}} \\
& \gamma=1 \quad \text { IR artifacts: } \quad \sim \frac{1}{2 p \ell+\ell^{2}}+\cdots
\end{aligned}
$$

Full Theory Amplitude

$$
\left.\begin{array}{c}
m=m_{1}+m_{2}, \nu=\frac{m_{1} m_{2}}{m^{2}}, E=E_{1}+E_{2}, \xi=\frac{E_{1} E_{2}}{E^{2}}, \gamma=\frac{E}{m}, \sigma=\frac{p_{1} \cdot p_{2}}{m_{1} m_{2}} \\
\mathcal{M}_{1}=-\frac{4 \pi G \nu^{2} m^{2}}{\gamma^{2} \xi \boldsymbol{q}^{2}}\left(1-2 \sigma^{2}\right) \quad \mathcal{M}_{2}=-\frac{3 \pi^{2} G^{2} \nu^{2} m^{3}}{2 \gamma^{2} \xi|\boldsymbol{q}|}\left(1-5 \sigma^{2}\right)+\int_{\ell} \frac{32 \pi^{2} G^{2} \nu^{4} m^{4} E\left(1-2 \sigma^{2}\right)^{2}}{\gamma^{4} \xi \ell^{2}(\ell+\boldsymbol{q})^{2}\left(2 \boldsymbol{p} \boldsymbol{l}+\ell^{2}\right)} \\
\mathcal{M}_{3}=\frac{\pi G^{3} \nu^{2} m^{4} \log \boldsymbol{q}^{2}}{6 \gamma^{2} \xi}\left[3-6 \nu+206 \nu \sigma-54 \sigma^{2}+108 \nu \sigma^{2}+4 \nu \sigma^{3}-\frac{48 \nu\left(3+12 \sigma^{2}-4 \sigma^{4}\right) \operatorname{arcsinh} \sqrt{\frac{\sigma-1}{2}}}{\sqrt{\sigma^{2}-1}}\right. \\
\left.-\frac{18 \nu \gamma\left(1-2 \sigma^{2}\right)\left(1-5 \sigma^{2}\right)}{(1+\gamma)(1+\sigma)}\right]+\frac{8 \pi^{3} G^{3} \nu^{4} m^{6}}{\gamma^{4} \xi}\left[3 \gamma\left(1-2 \sigma^{2}\right)\left(1-5 \sigma^{2}\right) F_{1}-32 m^{2} \nu^{2}\left(1-2 \sigma^{2}\right)^{3} F_{2}\right] \\
F_{1}=\int_{\ell} \frac{1}{\ell^{2}|\ell+\boldsymbol{q}|\left(2 \boldsymbol{p} \ell+\ell^{2}\right)}
\end{array} F_{2}=\int_{\ell_{1}, \ell_{2}} \frac{1}{\ell_{1}^{2}\left(\ell_{1}+\ell_{2}\right)^{2}\left(\ell_{2}+\boldsymbol{q}\right)^{2}\left(2 \boldsymbol{p} \ell_{1}+\ell_{1}^{2}\right)\left(2 \boldsymbol{p} \ell_{2}+\ell_{2}^{2}\right)}\right) . ~ l
$$

* Note IR artifacts.
* Used dimreg to extract log[q]
* Real part only (conservative)
* Valid for $q \ll m$
* Resummed. Checked at 8PN and with Mellin-Barnes, IBP.

Effective Field Theory

$$
\begin{aligned}
& \mathcal{L}=\mathcal{L}_{\text {kin }}-\int_{\boldsymbol{k}, \boldsymbol{k}^{\prime}} V\left(\boldsymbol{k}, \boldsymbol{k}^{\prime}\right) A^{\dagger}\left(\boldsymbol{k}^{\prime}\right) A(\boldsymbol{k}) B^{\dagger}\left(-\boldsymbol{k}^{\prime}\right) B(-\boldsymbol{k}) \\
& V=\frac{c_{1} \kappa}{|\boldsymbol{q}|^{2}}+\frac{c_{2} \kappa^{2}}{|\boldsymbol{q}|}+c_{3} \kappa^{2} \log |\boldsymbol{q}|+\ldots \\
& \begin{array}{l}
\boldsymbol{q}=\boldsymbol{k}-\boldsymbol{k}^{\prime} \\
c_{i}=c_{i}\left[\left(\boldsymbol{k}^{2}+\boldsymbol{k}^{\prime 2}\right) / 2\right]
\end{array}
\end{aligned}
$$

COM, real, gauge-dependent

Effective Theory Amplitude

$$
\begin{aligned}
M_{\mathrm{EFT}}^{(1)} & =-\frac{\kappa c_{1}}{\boldsymbol{q}^{2}}, \\
M_{\mathrm{EFT}}^{(2)} & =-\frac{\kappa^{2} c_{2}}{8|\boldsymbol{q}|}+\frac{\kappa^{2}}{16 E \xi|\boldsymbol{q}|}\left[(1-3 \xi) c_{1}^{2}+4 \xi^{2} E^{2} c_{1} c_{1}^{\prime}\right]+\int_{l} \frac{2 E \xi \kappa^{2} c_{1}^{2}}{\boldsymbol{l}^{2}|\boldsymbol{l}+\boldsymbol{q}|^{2}\left(\boldsymbol{l}^{2}+2 \boldsymbol{p} \boldsymbol{l}\right)}, \\
M_{\mathrm{EFT}}^{(3)} & =\frac{\kappa^{3} c_{3} \log |\boldsymbol{q}|}{16 \pi^{2}}+\frac{\kappa^{3} \log |\boldsymbol{q}|}{32 \pi^{2} E^{2} \xi}\left[(1-4 \xi) c_{1}^{3}-8 \xi^{3} E^{4} c_{1} c_{1}^{\prime 2}-4 \xi^{3} E^{4} c_{1}^{2} c_{1}^{\prime \prime}+4 \xi^{2} E^{3} c_{2} c_{1}^{\prime}\right. \\
& \left.+\xi^{2} E^{3} c_{1} c_{2}^{\prime}-2(3-9 \xi) \xi E^{2} c_{1}^{2} c_{1}^{\prime}-6 \xi E c_{1} c_{2}+2 E c_{1} c_{2}\right] \\
& +\int_{\boldsymbol{l}_{1}, l_{2}} \frac{4 T_{1}^{2} \xi^{2} \kappa^{3} c_{1}^{3}}{\boldsymbol{l}_{1}+\left.\boldsymbol{l}_{2}\right|^{2}\left|\boldsymbol{l}_{2}+\boldsymbol{q}\right|^{2}\left(\boldsymbol{l}_{1}^{2}+2 \boldsymbol{\boldsymbol { l } _ { 1 }) (\boldsymbol { l } _ { 2 } ^ { 2 } + 2 \boldsymbol { p } \boldsymbol { l } _ { 2 })}\right.}+\int_{\boldsymbol{l}} \frac{2 \kappa^{3} c_{1}^{2}\left[(1-3 \xi) c_{1}+4 \xi^{2} E^{2} c_{1}^{\prime}\right]}{\boldsymbol{l}^{2}|\boldsymbol{l}+\boldsymbol{q}|\left(\boldsymbol{l}^{2}+2 \boldsymbol{p l}\right)}
\end{aligned}
$$

* Note IR artifacts and subtractions.

Matching

$$
\begin{aligned}
c_{3}=\frac{\nu^{2} m^{4}}{\gamma^{2} \xi}[& \frac{1}{12}\left(3-6 \nu+206 \nu \sigma-54 \sigma^{2}+108 \nu \sigma^{2}+4 \nu \sigma^{3}\right)-\frac{4 \nu\left(3+12 \sigma^{2}-4 \sigma^{4}\right) \sinh ^{-1} \sqrt{\frac{\sigma-1}{2}}}{\sqrt{\sigma^{2}-1}} \\
& -\frac{3 \nu \gamma\left(1-2 \sigma^{2}\right)\left(1-5 \sigma^{2}\right)}{2(1+\gamma)(1+\sigma)}-\frac{3 \nu \sigma\left(7-20 \sigma^{2}\right)}{2 \gamma \xi}-\frac{\nu^{2}\left(3+8 \gamma-3 \xi-15 \sigma^{2}-80 \gamma \sigma^{2}+15 \xi \sigma^{2}\right)\left(1-2 \sigma^{2}\right)}{4 \gamma^{3} \xi^{2}} \\
& \left.+\frac{2 \nu^{3}(3-4 \xi) \sigma\left(1-2 \sigma^{2}\right)^{2}}{\gamma^{4} \xi^{3}}+\frac{\nu^{4}(1-2 \xi)\left(1-2 \sigma^{2}\right)^{3}}{2 \gamma^{6} \xi^{4}}\right],
\end{aligned}
$$

New Result in Relativity

$$
\begin{gathered}
H(\boldsymbol{p P M}, \boldsymbol{r})=\sqrt{\boldsymbol{p}^{2}+m_{1}^{2}}+\sqrt{\boldsymbol{p}^{2}+m_{2}^{2}}+\sum_{i=1}^{3} c_{i}\left(\boldsymbol{p}^{2}\right)\left(\frac{G}{|\boldsymbol{r}|}\right)^{i} \\
m=m_{1}+m_{2}, \nu=\frac{m_{1} m_{2}}{m^{2}}, E=E_{1}+E_{2}, \xi=\frac{E_{1} E_{2}}{E^{2}}, \gamma=\frac{E}{m}, \sigma=\frac{p_{1} \cdot p_{2}}{m_{1} m_{2}} \\
c_{1}=\frac{\nu^{2} m^{2}}{\gamma^{2} \xi}\left(1-2 \sigma^{2}\right) \quad c_{2}=\frac{\nu^{2} m^{3}}{\gamma^{2} \xi}\left[\frac{3}{4}\left(1-5 \sigma^{2}\right)-\frac{4 \nu \sigma\left(1-2 \sigma^{2}\right)}{\gamma \xi}-\frac{\nu^{2}(1-\xi)\left(1-2 \sigma^{2}\right)^{2}}{2 \gamma^{3} \xi^{2}}\right] \\
c_{3}=\frac{\nu^{2} m^{4}}{\gamma^{2} \xi}\left[\frac{1}{12}\left(3-6 \nu+206 \nu \sigma-54 \sigma^{2}+108 \nu \sigma^{2}+4 \nu \sigma^{3}\right)-\frac{4 \nu\left(3+12 \sigma^{2}-4 \sigma^{4}\right) \sinh ^{-1} \sqrt{\frac{\sigma-1}{2}}}{\sqrt{\sigma^{2}-1}}\right. \\
-\frac{3 \nu \gamma\left(1-2 \sigma^{2}\right)\left(1-5 \sigma^{2}\right)}{2(1+\gamma)(1+\sigma)}-\frac{3 \nu \sigma\left(7-20 \sigma^{2}\right)}{2 \gamma \xi}-\frac{\nu^{2}\left(3+8 \gamma-3 \xi-15 \sigma^{2}-80 \gamma \sigma^{2}+15 \xi \sigma^{2}\right)\left(1-2 \sigma^{2}\right)}{4 \gamma^{3} \xi^{2}} \\
\left.+\frac{2 \nu^{3}(3-4 \xi) \sigma\left(1-2 \sigma^{2}\right)^{2}}{\gamma^{4} \xi^{3}}+\frac{\nu^{4}(1-2 \xi)\left(1-2 \sigma^{2}\right)^{3}}{2 \gamma^{6} \xi^{4}}\right],
\end{gathered}
$$

Checks

Potentials e.g. from PN and NRGR are in different gauges:

$$
V \supset \boldsymbol{p}^{2}-\boldsymbol{p}^{\prime 2} \sim \boldsymbol{p} \cdot \boldsymbol{q} \sim \boldsymbol{p} \cdot \boldsymbol{r}
$$

Compare to 4PN Damour, Jaranowski, Schäfer 2014 Bernard, Blanchet, Boh, Faye, Marsat 2015 Jaranowski, Schäfer 2015

$$
\begin{aligned}
& G\left(1+v^{2}+v^{4}+v^{6}+v^{8}+\ldots\right) \\
& G^{2}\left(1+v^{2}+v^{4}+v^{6}+v^{8}+\ldots\right) \\
& G^{3}\left(1+v^{2}+v^{4}+v^{6}+v^{8}+\ldots\right) \\
& G^{4}\left(1+v^{2}+v^{4}+v^{6}+v^{8}+\ldots\right) \\
& G^{5}\left(1+v^{2}+v^{4}+v^{6}+v^{8}+\ldots\right)
\end{aligned}
$$

Construct diffeo to map Hamiltonians
$(\boldsymbol{r}, \boldsymbol{p}) \rightarrow(\boldsymbol{R}, \boldsymbol{P})=(A \boldsymbol{r}+B \boldsymbol{p}, C \boldsymbol{p}+D \boldsymbol{r})$
$\{\boldsymbol{r}, \boldsymbol{p}\}=\{\boldsymbol{R}, \boldsymbol{P}\}=\mathbf{1}$

Compute on-shell amplitudes from different potentials

Checks

Compute physical quantities

- 2PN energy of circular orbit
- 4PN scattering angle Bini, Damour

$$
\begin{aligned}
\chi= & -\frac{m \gamma \xi \widetilde{M}_{1}}{2 \pi L|\boldsymbol{p}|}-\frac{m \gamma \xi \widetilde{M}_{2}}{2 \pi L^{2}}+\frac{2 m \gamma \xi|\boldsymbol{p}| \widetilde{M}_{3}}{\pi L^{3}} \\
& -\frac{m^{2} \gamma^{2} \xi^{2} \widetilde{M}_{1} \widetilde{M}_{2}}{2 \pi^{3} L^{3}|\boldsymbol{p}|}+\frac{m^{3} \gamma^{3} \xi^{3} \widetilde{M}_{1}^{3}}{96 \pi^{3} L^{3}|\boldsymbol{p}|^{3}},
\end{aligned}
$$

Compare to Schwarzchild in
probe limit $\quad m_{1} \ll m_{2} \quad V_{\mathrm{S}}=\left(1-\frac{G m}{2 r}\right)\left(1+\frac{G m}{2 r}\right)^{-1} \sqrt{1+\left(1+\frac{G m}{2 r}\right)^{-4} \boldsymbol{p}^{2}}-1$
\quad - all orders in velocity

Conclusions

There's lots to do.

$$
\begin{array}{ll}
\left(1+v^{2}+v^{4}+v^{6}+v^{8}+\ldots\right) & \\
G^{2}\left(1+v^{2}+v^{4}+v^{6}+v^{8}+\ldots\right) & * \text { 5PN (bias), 6PN (LISA) } \\
G^{3}\left(1+v^{2}+v^{4}+v^{6}+v^{8}+\ldots\right) & \star \text { radiation, spin, tidal } \\
G^{4}\left(1+v^{2}+v^{4}+v^{6}+v^{8}+\ldots\right) & \star \text { further develop tools } \\
G^{5}\left(1+v^{2}+v^{4}+v^{6}+v^{8}+\ldots\right) & \\
G^{6}\left(1+v^{2}+v^{4}+v^{6}+v^{8}+\ldots\right) &
\end{array}
$$

Quantum field theory is useful for GW astrophysics.

Binary Black Holes and Gluon Scattering Amplitudes

Mikhail P. Solon Caltech

based on work with

Clifford Cheung, Ira Rothstein (PRL)

Zvi Bern, Clifford Cheung, Radu Roiban, Chia-Hsien Shen, Mao Zeng (PRL)

Zvi Bern, Clifford Cheung, Radu Roiban, Chia-Hsien Shen, Mao Zeng (long paper)

