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Scattering amplitudes

For a theoretical description we need to know the scattering amplitude:
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P1 D4

Next external particles with momenta py, ..., pn...-

Momentum conservation: p; + ...+ pn., = 0.



Feynman diagrams

We may compute the scattering amplitude within perturbation theory:
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Feynman integrals

Associate to a Feynman graph G with N, external lines, n internal lines and [ loops
the set of Feynman integrals

d’k;  dPk; & 1
IV1V2...Vn — /

(2W)D (2W)D j=1 (Q§ —m3>vj’

withv; € ZandVv =v;+...+V,.



Pinching of propagators

If for some exponent we have v; = 0, the corresponding propagator is absent and the
topology simplifies:




Integration by parts

Within dimensional regularisation we have for any loop momentum k; and v €
{pla"'vaeXtakla'“vkl}

W - = 0.

/del del 0 1 1
(em)”(2m)” Ok i (gh—m2)"

Working out the derivatives leads to relations among integrals with different sets of
indices (Vi,...,Vy)-

This allows us to express most of the integrals in terms of a few master integrals.

Tkachov ’81, Chetyrkin ’81



Laporta’s algorithm

Expressing all integrals in terms of the master integrals requires to solve a rather large
linear system of equations.

This system has a block-triangular structure, originating from subtopologies.
Order the integrals by complexity (more propagators = more difficult)

Solve the system bottom-up, re-using the results for the already solved sectors.

Laporta ‘01



Differential equations

Let x; be a kinematic variable. Let I; € {I,...,Iy_,....} be a master integral. Carrying
out the derivative

9,
axk l

under the integral sign and using integration-by-parts identities allows us to express
the derivative as a linear combination of the master integrals.

a Nmaster
a—li = Z Clijlj
Xk =1

(Kotikov ’90, Remiddi '97, Gehrmann and Remiddi '99)



Differential equations

Let us formalise this:

I[=(I,..1Iy...), setof masterintegrals,

X=(X1,...,XNz) 5 set of kinematic variables the master integrals depend on.

We obtain a system of differential equations of Fuchsian type

dI+AI = 0,
where A is a matrix-valued one-form
Np
A = ) Adx;.
i=1

The matrix-valued one-form A satisfies the integrability condition

dA+ANA = O (flat GauB-Manin connection).

Computation of Feynman integrals reduced to solving differential equations!



The e-form of the differential equation

If we change the basis of the master integrals J = U1, the differential equation becomes

(d+ANT =0, A =UAU'+UJU"!

Suppose one finds a transformation matrix U, such that

Al = SZ dehlpj()_C)),
J

where

- € appears only as prefactor,
- C; are matrices with constant entries,
- p;j(X) are polynomials in the external variables,

then the system of differential equations is easily solved

polylogarithms.
Henn 13

in terms of multiple



Transformation to the e-form

We may

e change the basis of the master integrals
I — UI :
where U is rational in the kinematic variables

Henn ’13; Gehrmann, von Manteuffel, Tancredi, Weihs ’14; Argeri et al. ’14; Lee '14; Meyer ’16; Prausa ’17; Gituliar,

Magerya '17; Lee, Pomeransky '17;
e perform a rational / algebraic transformation on the kinematic variables

(X153 XN,)  — (x’l,...,vaB),

often done to absorb square roots.

Becchetti, Bonciani, '17, Besier, van Straten, S.W., ’18



Multiple polylogarithms

Definition based on nested sums:

) xl’ll xl’lz xl’lk
. 1 2 k
lebmz,...,mk(-xl,xz,...,Xk) = Z 71.72..”.7](
ny>np>...>n>0 np n ny
Definition based on iterated integrals:
y n Ik—1
G( ) / dt / dt, / dty
Ly ey Zks =
etk h—z21J h—2 Ik — 2k
0 0 0
Conversion:
1 1 1
lehm?mk(xl,...,xk) = (1) Gny,...omy (x—l,)@,...,mmx]c, 1)

Short hand notation:

Gmhm?mk(zl,...,zk;y) = G(O,...,O,zl,...,zk_l,O...,O,zk;y)

ml—l mk—l



Example

Let us consider a simple example: One integral I in one variable x with boundary
condition /(0) = 1. Consider the differential equation

(d+A) =0, A= —edn(x—1).

Note that

din(x—1) =

and

I(x) = 1+eG(1;x)+€°G(1,1;x)+eG(1,1,1;x) +...



Iterated integrals

For wy, ..., 0y differential 1-forms on a manifold M and 7y: [0,1] — M a path, write for
the pull-back of ®; to the interval |0, 1]

The iterated integral is defined by (Chen77)

Me—1

A A
Iy((x)l,...,(x)k;},) = /d}«lfl (kl)/dszz (7\2) / dkkfk (7\,]()
0 0 0



Iterated integrals

Example 1: Multiple polylogarithms (Goncharov '98)

Example 2: Iterated integrals of modular forms (grown"14): f;(T) @ modular form,
®; = 2mif;(7) dr.

Example 3: lterated integrals on a covering space of a fixed single elliptic curve,
also known as “elliptic polylogarithms”
(Broedel, Duhr, Dulat, Penante, Tancredi, ’17-’19).
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(Feynman integrals beyond multiple polylogarithms)



Single-scale Feynman integrals beyond multiple polylogarithms

Not all Feynman integrals are expressible in terms of multiple polylogarithms!




The Picard-Fuchs operator

Let / be one of the master integrals {1, ...,In,....}- Choose a path y: [0,1] — M and
study the integral I as a function of the path parameter A.

Instead of a system of NV,,.«te first-order differential equations
(d+A)T = 0,

we may equivalently study a single differential equation of order Ny aster

N, master

Z pi(A d?\J = 0.

We may work modulo sub-topologies and g-corrections:

r d_]
L = ij (k)m : LI = 0 mod (sub-topologies, e-corrections)



Factorisation of the Picard-Fuchs operator

Suppose the differential operator factorises into linear factors:

L = ( .(\) dderb(?»)) ( »(A) dd“bz(x)) (mW%Ml(x))

lterated first-order differential equation.

Denote homogeneous solution of the j-th factor by

A
Vi(A) = exp (/dK Zjég) .

Full solution given by iterated integrals

M
C1\|fl (7\,) —|—C2\|11 /d?\,l }q\iz)(w z}\‘ )—|—C3\|fl /d?hl WZ /d?\,z W3 —|—

Multiple polylogarithms are of this form.



Picard-Fuchs operator: Beyond linear factors

Suppose the differential operator

r

ij dw

does not factor into linear factors.

The next more complicate case:
The differential operator contains one irreducible second-order differential operator

‘. (x)%w (x)%wj(x)



An example from mathematics: Elliptic integral

The differential operator of the second-order differential equation

is irreducible.

The solutions of the differential equation are K (k) and K(v/1 —k?), where K (k) is the
complete elliptic integral of the first kind:

I
/\/ 1—x2 1 —k2x2)
0



An example from physics: The two-loop sunrise integral

1
(2
S (0:3) = )
Picard-Fuchs operator for S111(2,x):
2

d d
L = x(x—l)(x—9)@+(3x2—20x+9)5+(x—3)

(Broadhurst, Fleischer, Tarasov '93)
Irreducible second-order differential operator.

Picard-Fuchs operator for the periods of a family of elliptic curves.



The elliptic curve

How to get the elliptic curve?

e From the Feynman graph polynomial:

—X1X0X3X + (x1 +x2 +x3) (X100 +X0x3 +x3x1)) = 0

e From the maximal cut:

V= (u—x)(u—x+4) (B> +2u+1-4x) = 0

Baikov '96; Lee '10; Kosower, Larsen, '11; Caron-Huot, Larsen, '12; Frellesvig, Papadopoulos, '17; Bosma, Sogaard,

Zhang, ’17; Harley, Moriello, Schabinger, '17

The periods yy, Y, of the elliptic curve are solutions of the homogeneous differential
equation.
Adams, Bogner, S.W., ’13; Primo, Tancredi, 16



Variables

Recall
= 7
m2
Set
T = E, q =
V1

Change variable from x to T (0or g) (Bloch, Vanhove, '13).



Bases of lattices

The periods y; and y, generate a lattice. Any other basis as good as (W, ).
Convention: Normalise (W, 1) — (t,1) where T =y, /.

Change of basis:

Transformation should be invertible;

In terms of T and T’: T =



The e-form of the differential equation for the sunrise

It is not possible to obtain an e-form by a rational/algebraic change of variables and/or
a rational/algebraic transformation of the basis of master integrals.

However by factoring off the (non-algebraic) expression y; /7 from the master integrals
in the sunrise sector one obtains an &-form:

T 11 d 1 e
I = 4€>S110(2 -2 L= —e"—8(2—2¢ Lh=———L+—(3x*~10x—9) -L1,.
1 £-S110 ( g,x), b W 11 ( ,x), I3 827tid’52+24(x X )n22

If in addition one makes a (non-algebraic) change of variables from x to T, one obtains

d - S
—I = ¢€eA(T)]
- (01,

where A(7) is an e-independent 3 x 3-matrix whose entries are modular forms.



The e-form of the differential equation for the sunrise

The matrix A(7) is given by

0 0 0
A(t) = 0 —/f2(7) 1|,
() () —hH(>)

where f,, f3 and f; are modular forms of I'{(6) of modular weight 2, 3 and 4,
respectively.

I, I, and I; are expressed as iterated integrals of modular forms to all orders in €.

Adams, S.W.,’17,’18



Feynman integrals evaluating to iterated integrals of modular
forms

This applies to a wider class of Feynman integrals:
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(An example from top-pair production)



Kinematics

7
s 1 ) E vj—D de1 de2 L
s (0 ) = 0 [ S
J=17

P2 P3
o2 5
1 4 7
3 1.6
P11’ P4
2 2 2 2 2
pi=p;=0, p3 = ps=m’,



Picard-Fuchs operator of elliptic curves

e Sunrise integral: An elliptic curve can be obtained either from

— Feynman graph polynomial
— maximal cut

The periods 1, Y, are the solutions of the homogeneous differential equations.

Adams, Bogner, S.\W.,,’13,’14

e In general: The maximal cuts are solutions of the homogeneous differential
equations.

Primo, Tancredi, '16

Search for Feynman integrals, whose maximal cuts are periods of an elliptic curve.



Maximal cuts

Maximal cut: For a Feynman integral

(‘uz)VID/Z/ del del A |

m)” " 2n)” AP

IV1V2...Vn

take the n-fold residue at

of the integrand and integrate over the remaining (/D — n) variables along a contour C.



Maximal cuts

Sunrise :
MaxCute L1001001 (2 — 2€) =
um? dp

1
T (P—1)7(P—1+4m2)? (P24 2m2P — dmPt + m*)?

+O0(¢).

Double box :

MaxCute I1111111 (4 —2¢€) =
um® dP
47t s?

+0(g).

o=

A

C 1 Y 2 TP G}
(P=0)} (P—t-+4m2)? (P24 202P — it 4.~
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Three elliptic curves
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s —4m?
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Remarks

E@ gives rise to iterated integrals of modular forms of I'; (6).
For s — oo the curves E?) and E(°) degenerate to E@.

If we would have only one curve, we expect that the result can be written in elliptic
polylogarithms.

We have three elliptic curves.



Results

The differential equation for the master integrals can be brought into the form
dl = €Al

where A is independent of €.

The Laurent expansion in € of all master integrals can be computed systematically to
all orders in € in terms of iterated integrals.

The solution

- reduces to multiple polylogarithms for ¢ = m? and

- reduces to iterated integrals of modular forms of I';(6) for s = oo.

Adams, Chaubey, S.W., 18



Conclusions

Loop integrals with masses important for top, W /Z- and H-physics.
May involve elliptic sectors from two loops onwards.

There is a class of Feynman integrals evaluating to iterated integrals of modular
forms.

The planar double box integral relavant to #z-production with a closed top loop
depends on two variables and involves several elliptic sub-sectors. More than one
elliptic curve occurs. Results expressed in terms of Chen’s iterated integrals.

We may expect more results in the near future.



